1. 什么是iGRP?
iGRP(Internet Gross Rating Points,互联网总收视点)是衡量数字广告活动效果的核心指标之一,由传统电视广告中的GRP(Gross Rating Points)演变而来。它综合评估了广告在目标人群中的覆盖广度(到达率)和触达深度(频次),为广告主提供跨渠道效果对比的统一标准。
2. 传统GRP的计算逻辑回顾
传统GRP的计算公式为:
[
\text{GRP} = \text{到达率(Reach)} \times \text{平均频次(Frequency)}
]
- 到达率:目标人群中至少看到一次广告的用户占比(百分比)。
- 平均频次:每个用户平均看到广告的次数。
例如,某电视广告覆盖了目标人群的40%(到达率40),用户平均观看2次(频次2),则GRP为80。
3. iGRP的计算方法与步骤
iGRP的计算延续了GRP的框架,但数据来源和统计方式适应数字广告特点:
a. 到达率的计算
[
\text{到达率} = \left( \frac{\text{唯一用户数(Unique Users)}}{\text{目标人群总量}} \right) \times 100
]
- 唯一用户数:通过设备ID、Cookie或账号体系去重后的实际触达用户数。
- 目标人群总量:广告活动定义的目标受众总人数(如18-34岁女性互联网用户)。
b. 平均频次的计算
[
\text{平均频次} = \frac{\text{广告总展示次数(Impressions)}}{\text{唯一用户数}}
]
c. iGRP计算
[
\text{iGRP} = \text{到达率} \times \text{平均频次}
]
示例:某广告活动目标人群为100万用户,实际触达50万唯一用户,广告展示次数为150万次。
- 到达率 = (50万 / 100万) × 100 = 50%
- 平均频次 = 150万 / 50万 = 3次
- iGRP = 50 × 3 = 150
4. 技术挑战与影响因素
- 跨设备与隐私限制:iOS的ATT框架和隐私法规导致用户追踪受限,需采用概率模型或联合ID技术估算唯一用户数。
- 广告可见性(Viewability):遵循MRC标准,仅统计符合可视条件的展示(如50%像素展示超1秒)。
- 归因窗口:频次计算需界定时间范围(如7天内的曝光计入统计)。
5. 与传统GRP的对比
维度 | 传统GRP | iGRP |
---|---|---|
数据来源 | 抽样收视率数据 | 全量广告服务器日志 |
覆盖统计 | 基于家庭或样本户 | 基于用户级去重 |
实时性 | 延迟较高(次日数据) | 近实时更新 |
精准度 | 依赖样本外推 | 直接测量但受隐私限制影响 |
6. 应用场景与案例
某品牌推广新品,通过程序化广告投放获取以下数据:
- 目标人群:500万都市年轻白领。
- 唯一触达用户:300万。
- 总展示次数:900万次。
计算得:
- 到达率 = (300万 / 500万) × 100 = 60%
- 平均频次 = 900万 / 300万 = 3
- iGRP = 60 × 3 = 180
对比电视广告GRP(假设同为180),可横向评估数字渠道的效率。
7. 结论与趋势
iGRP的普及推动了跨媒体预算分配的科学化,但需解决用户隐私与数据透明的平衡问题。未来,随着AI驱动的归因模型和隐私计算技术(如联邦学习)的发展,iGRP的精度与适用性将进一步提升,成为全域营销的核心度量指标。
注:不同机构对iGRP的定义可能存在差异,实践中建议以IAB等行业标准或合作监测方的计算口径为准。