- 博客(15)
- 资源 (2)
- 收藏
- 关注

原创 吴恩达深度学习第二课第三周编程作业(我使用的是TF2.0)
本文参考的博客为https://blog.csdn.net/u013733326/article/details/79971488原博客中作者用的是tf1.x版本的,本文用的是tf2.x版本,
2020-08-01 13:14:02
8743
49
原创 故障轴承相关数据集
自己在官网整理的史上最全公开数据集,用于轴承故障诊断实验,实验发表期刊必备数据素材,便宜出,省去你查找搜索的时间,方便好用,现在一手便宜出。独家整理全面滚动轴承数据集 故障诊断,预测、分类 最全套数据集,来源于公开数据集 可做对比实验。加拿大渥太华大学变工况轴承振动数据集。德国-帕德博恩大学轴承数据集。FEMTO-ST轴承数据集。凯斯西储大学轴承数据集。康涅狄格大学齿轮数据集。WT-行星齿轮箱数据集。辛辛那提IMS数据集。东南大学齿轮箱数据集。HUST-轴承数据集。HIT航发轴承数据集。
2025-05-14 08:10:33
221
原创 MRNet 数据集分享
该数据集包含 1,104 (80.6%) 次异常检查,其中319 (23.3%) 次 ACL 撕裂和 508 (37.1%) 次半月板撕裂,且从每次检查中提取矢状面T2(sagittal plane T2-weighted series),冠状面T1(coronal plane T1-weighted series)以及轴面PD(axial plane PD-weighted series)三种模态,为了对病例做出正确的决定,放射科医生通常会从不同的平面查看 MRI 扫描,以便有一个全局的视野。
2025-05-10 21:14:58
267
原创 利用tushare一个选股的思路。
Tushare是一个免费提供各类金融数据 , 助力智能投资与创新型投资的平台。在这个平台上可以免费获得股票、期货和外汇的各种数据。(Tushare ID:488134)Tushare安装1.使用tushare的前提是部署好Python环境,然后与安装其他python模块一样使用pip命令安装tushare模块。pip install tushare -i https://pypi.douban.com/simple1、Tushare注册链接https://tushare.pro/regis
2022-04-18 16:21:28
1146
原创 tensorboard命令
tensorboard --logdir=C:\Users\wangtong\Desktop\MyCar\wt\ann-csv
2021-11-19 17:26:28
2025
1
原创 C#之Winform中防止重复打开同一子窗体(连点好多下只显示一个窗口,而不是打开多个窗口)
最近老师让跟了一个小项目,做一个上位机软件出来,这里遇到的小问题和大家分享一下如图,实现这样一个小功能,不管点击多少次这个分区设置,只弹出一个子窗体,在子窗体最小化后,点“分区设置按钮”,可以把最小化的子窗口继续打开,具体如下话不多说,直接上代码: public class GenericSingleton<T> where T : Form, new() { private static T t =...
2020-12-01 11:16:10
3635
4
原创 深度学习之MNIST手写数字识别——卷积神经网络训练模型并生成gui窗口进行在线识别之代码分享及讲解
首先看一下用到的库安装必要的库pip install PyQt5pip install PyQt5 -sippip install PyQt5 -toolspip install numpypip install tensorflow用pip镜像安装,不用多说了吧,不会的可以在评论区问,附上镜像源:pip install xxxx-ihttps://pypi.douban.com/simple或者-ihttps://pypi.tuna.tsinghua.edu.cn/simp..
2020-11-03 20:29:57
1852
9
原创 深度学习之MNIST手写数字识别——卷积神经网络训练模型并生成gui窗口进行在线识别之基本知识了解
一 基本知识准备1.卷积(Convolutional)顾名思义,卷积层由一组卷积单元(又称"卷积核")组成,可以把这些卷积单元理解为过滤器,每个过滤器都会提取一种特定的特征对卷积层功能的理解一般认为图像的空间联系是局部的像素联系比较密切,而距离较远的像素相关性较弱,因此,每个神经元没必要对全局图像进行感知,只要对局部进行感知,然后在更高层将局部的信息综合起来得到全局信息。 给定一张输入图片,用一个卷积核去扫这张图,卷积核里面的数就叫权重,这张图每个位置是被同样的卷积核扫的,所以权重..
2020-11-01 11:20:35
3040
11
原创 【吴恩达课后编程作业】Course 5 - 序列模型 - 第三周作业 - 机器翻译与触发词检测
hello,吴恩达老师深度学习的最后一课来啦,参考博客为何宽大佬的https://blog.csdn.net/u013733326/article/details/97619187把自己复现代码遇到的问题记录一下问题一:在代码出现错误TypeError: Calling ‘.seed()’ on instances is deprecated. Use the class method ‘Faker.seed()’ instead.解决办法:将faker版本降低到2.0.0,并重启ju.
2020-10-11 17:02:45
1094
原创 吴恩达深度学习第五课序列模型第一周编程作业
iframe src="https://nbviewer.jupyter.org/github/wangtong1998/lanbaiwt/blob/main/序列模型第一周.ipynb" width="850" height="2000"></iframe<iframe src="https://nbviewer.jupyter.org/github/wangtong1998/lanbaiwt/blob/main/序列模型第一周.ipynb" width="100%" height.
2020-10-05 09:37:13
684
1
原创 吴恩达深度学习 deeplearning.ai (4-4) 编程作业
本文参考何宽大神的博客https://blog.csdn.net/u013733326/article/details/80767079首先先放一下第一个编程作业的代码from keras.models import Sequentialfrom keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenatefrom keras.models import Modelfrom keras.layers..
2020-09-28 10:35:34
1453
7
原创 吴恩达课后编程作业Course 4 - 卷积神经网络 - 第二周作业
本文参考的博客为https://blog.csdn.net/u013733326/article/details/80250818原博客中作者用的是tf1.x版本的,本文用的是tf2.x版本1 - Keras 入门 - 笑脸识别本次我们将:学习到一个高级的神经网络的框架,能够运行在包括TensorFlow和CNTK的几个较低级别的框架之上的框架。 看看如何在几个小时内建立一个深入的学习算法。 为什么我们要使用Keras框架呢?Keras是为了使深度学习工程师能够很快地建立和实验不.
2020-08-16 12:14:59
4103
7
原创 吴恩达课后编程作业卷积神经网络 - 第四课第一周作业
本文参考何宽大神的文章,https://blog.csdn.net/u013733326/article/details/80086090基于以上的文章加以自己的理解发表这篇博客,希望对大家的学习有所帮助何宽大神的代码使用的是tf1.x,我所用的是tf2.x,一些代码有所改动,希望大家注意1. 神经网络的底层搭建 1.1 - 导入库我们先要引入一些库:import numpy as npimport h5pyimport matplotlib.pyplot as plt
2020-08-11 22:25:44
5682
17
原创 【吴恩达课后测验】Course 3 - 结构化机器学习项目 - 第一周测验之关于我的理解
前10个很简单,对此没什么疑惑,第十一题我有一些迷,查阅网上资料后,清楚了一些,把我的理解挂上正则化是为了防止过拟合开发集和测试集是属于同一分布的,此时两者的错误率相差很大,说明对开发集适应的太好,过拟合了,从而导致对测试集测试的不好。改善的策略有很多,为了防止过拟合,可以增加开发集大小等如果把数据放进数据集之后,训练的话就会造成对原有的图像进行再训练,这将会导致过拟合、新样本相对于总样本比例非常低、系统性能下降、时间过长等问题,所以把这1000张数据放进原有的数据集里面是...
2020-08-04 20:21:42
292
dzfp_25372000000022580637_济南博观智能科技有限公司_20250206065154.pdf
2025-04-26
序列模型第一周.ipynb
2020-10-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人