卡方检验及其在Python中的应用

作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~
个人主页小高要坚强的博客
当前专栏Python之机器学习
本文内容:卡方检验及其在Python中的应用
作者“三要”格言:要坚强、要努力、要学习


目录

一、卡方检验的基本原理

卡方统计量的计算

二、卡方检验的主要用途

1. 两个率或两个构成比比较的卡方检验

用途说明

应用示例

结果解读

2.多个率或多个构成比比较的卡方检验

用途说明

应用示例

3.分类资料的相关分析

用途说明

4.适合度检验

用途说明

应用示例

三、配对卡方检验

1. 例子

2. 使用 SquareTable 和 mcnemar 类进行分析

四、总结


卡方检验(Chi-Square Test)是统计学中一种用于比较分类变量的显著性检验方法。本文将介绍卡方检验的基本原理、主要用途及其在Python中的实现。

一、卡方检验的基本原理

卡方检验的核心思想是检验观察频数与期望频数之间的差异。其零假设(H0)通常为“观察频数与期望频数没有显著差别”。通过计算卡方统计量,可以判断两组分类变量是否独立。

卡方统计量的计算

卡方统计量的计算公式为:

其中,O为实际观察频数,E为期望频数。当观察频数与期望频数完全一致时,卡方值为0;随着差异增大,卡方值也会增大。卡方值的大小还与自由度有关。

二、卡方检验的主要用途

1. 两个率或两个构成比比较的卡方检验

用途说明

当我们需要比较两个不同组别的比例或构成比时,卡方检验提供了一种有效的方法。例如,可以用于比较不同性别的疾病发病率、不同地区的购车率等。

应用示例

假设我们想比较男性和女性在某种疾病的发病率。我们可以收集如下数据:

通过卡方检验,我们可以评估男性和女性的患病率是否存在显著差异。Python执行代码如下:

import pandas as pd
import statsmodels.stats.contingency_tables as tbl

# 创建数据
data = pd.DataFrame({
    '性别': ['男性', '女性'],
    '患病人数': [30, 20],
    '未患病人数': [70, 80]  # 总人数 - 患病人数
})

# 创建交叉表
cross_tab = pd.crosstab(data['性别'], [data['患病人数'], data['未患病人数']])
print("交叉表:")
print(cross_tab)

# 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小高要坚强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值