LeetCode Hot 热题100 算法题 48.旋转图像-算法&测试-medium模式
给定一个n×n的二维矩阵表示一个图像,将图像顺时针旋转90度。
说明:必须在原地旋转图像,即直接修改输入的二维矩阵。请不要用另一个矩阵来旋转图像。
示例:matrix = [ [5,1,9,11],
[2,4,8,10],
[13,3,6,7],
[15,14,12,16] ]
输出: [ [15,13,2,5],
[14,3,4,1],
[12,6,8,9],
[16,7,10,11] ]
思路:newMatrix[j][n-i-1]=matrix[i][j];
package leetcode.medium;
//48.旋转图像
public class Solution048 {
public static void main(String[] args) {
int[][] matrix = {
{5,1,9,11},
{2,4,8,10},
{13,3,6,7},
{15,14,12,16}
};
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix.length; j++) {
System.out.print(matrix[i][j]+" ");
}
System.out.println();
}
System.out.println();
S48RotateImage testRotateImage = new S48RotateImage();
testRotateImage.rotate(matrix);
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix.length; j++) {
System.out.print(matrix[i][j]+" ");
}
System.out.println();
}
}
}
class S48RotateImage{
//法1:空间复杂度O(n^2)
public void rotateMatrix(int[][] matrix) {
int n = matrix.length;
int[][] arr = new int[n][n];
//将原矩阵的每个元素放入新矩阵的正确位置
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
arr[j][n-i-1]=matrix[i][j];
}
}
//将新矩阵结果复制到原矩阵(修改原矩阵)
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
matrix[i][j]=arr[i][j];
}
}
}
//法2:空间复杂度O(1)
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n/2; i++) {
for (int j = 0; j < (n+1)/2; j++) {
int temp = matrix[i][j];
matrix[i][j]=matrix[n-j-1][i];
matrix[n-j-1][i]=matrix[n-i-1][n-j-1];
matrix[n-i-1][n-j-1]=matrix[j][n-i-1];
matrix[j][n-i-1]=temp;
}
}
}
}
参考:
https://leetcode-cn.com/problems/rotate-image/solution/xuan-zhuan-tu-xiang-by-leetcode-solution-vu3m