Anaconda的安装与Pycharm配置(完整版)

一、Anaconda的安装与配置

参考:Anaconda超详细安装教程(Windows环境下)_conda安装-CSDN博客

安装conda搭建python环境(保姆级教程)_conda创建python虚拟环境-CSDN博客

(1)Anaconda的下载

清华大学镜像源下载:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

根据自己的电脑 选择合适的版本,可以参考后面的日期:

(2)Anaconda的安装

双击刚下下载的链接,点击“Next”:

同意协议书之后,选择所有用户:

选择一个空文件夹安装:

前两个是默认,最后一个我也选了:

等待程序安装,(有点慢)。好了之后点击"next"就可以了。这两个选项不用选,点击“Finish”:

(3)Anaconda的配置

进行环境变量配置

添加新的环境变量,注意是系统变量:

(4)测试安装是否成功

在cmd中输入以下命令进行测试:

conda --version
conda info
python

点击绿色的应用出现界面,下载成功:

二、通过conda配置python环境

(1)安装清华源

base环境下输入指令:

conda config --set show_channel_urls yes

然后在本地目录用户名的文件夹下C:\Users\用户名,产生的 .condarc,用记事本打开:然后将下面内容保存到 .condarc 文件里面即可。

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

完成!

接下来就可以创建虚拟环境,但是,之前出现一系列问题,因为之前下的anaconda版本太旧了。重新下载了anconda,问题明细保留下方:


解决方法可以参考:完美解决conda命令出现CondaHTTPError: HTTP 000 CONNECTION FAILED for url报错的终极方法_condahtterror-CSDN博客

【已解决】CondaHTTPError:HTTP 000 CONNECTION FAILED for url<https://mirrors.tuna.tsinghua.edu.cn-CSDN博客

还有这个,但不知道有用没:Anaconda创建虚拟环境时出现 Fetching package metadata ...-CSDN博客

检查网络设置,没问题:

先关闭防火墙试试:

控制面板-->系统与安全

出现新错误了(并不一定是关闭防火墙的原因,好像是开了tz 的原因),说是证书问题:

在C:\Users\zzu下找到.condarc文件,禁用SSL验证。设置ssl_verify: false,但这会降低安全性,成功之后要赶紧改回来,可以了。


(2)创建虚拟环境

输入以下命令,创建虚拟环境:

conda create --name lkg python=3.10

(3)查看虚拟环境并激活

查看环境是否创建成功,并激活环境以使用,创建的包通常在这个环境中:

conda info --envs
conda activate lkg

(4)安装python的工具包(只是帮助理解)

输入conda list可以看到,此时虚拟环境下已安装的包:

使用例子,可以不弄:


虚拟环境下有pip工具包后,可以使用pip安装其他工具包,举例输入“pip install see”:

删除包:


一些管理虚拟环境命令:

conda list:查看环境中的所有包
conda install XXX:安装 XXX 包
conda remove XXX:删除XXX 包
conda env list:列出所有环境
conda create -n XXX:创建名为 XXX 的环境 conda
create -n env_name jupyter notebook :创建虚拟环境
activate noti(或 source activate noti):启用/激活环境
conda env remove -n noti:删除指定环境
deactivate(或source deactivate):退出环境
jupyter notebook :打开Jupyter Notebook
conda config --remove-key channels :换回默认源

三、在虚拟环境中搭建深度学习环境

参考:基于Anaconda搭建深度学习环境,安装Tensorflow、Keras和Pytorch_conda先装keras还是tensorflow-CSDN博客

(1)安装pytorch

因为电脑没有显卡,直接安装cpu版本的cuda就行了,去官网复制相应命令,在刚才建的虚拟环境中安装就行了:Start Locally | PyTorch

在刚才建立的虚拟环境下,输入命令:

conda install pytorch torchvision torchaudio cpuonly -c pytorch

 (这部分之前整过):tensorflow、keras安装_如何安装tensorflow和keras-CSDN博客

 (2)其他包的安装--Tensorflow、Keras

输入指令(后面可以加 “=版本”,这里我没弄,默认最新):

conda install tensorflow
conda install keras

(3)检验环境是否安装好

四、Pycharm配置Anaconda环境

参考:Pycharm配置Anaconda详细教程(新建项目、打开现有项目)-CSDN博客

添加conda环境:

完成!

### 配置AnacondaPyCharm环境的详细教程 #### 一、安装Anaconda Anaconda 是一个开源的 Python 发行版本,专为计算科学设计,提供了 Conda 软件包管理和虚拟环境功能[^4]。 1. 下载并安装 Anaconda:访问官方下载页面,选择适合操作系统的版本进行安装[^3]。 2. 安装过程中勾选“Add Anaconda to my PATH environment variable”,以便在命令行中直接调用 conda 命令[^1]。 完成上述步骤后,可以通过打开终端或命令提示符输入 `conda list` 来验证 Anaconda 是否成功安装。 --- #### 二、安装PyCharm PyCharm 是一款强大的集成开发环境 (IDE),支持多种编程语言和框架。推荐使用社区版或专业版中的任意一种[^2]。 1. 访问 JetBrains 官方网站,下载 PyCharm 的最新版本。 2. 安装完成后启动 PyCharm 并按照向导完成初始设置。 如果需要中文界面,在菜单栏依次选择 **File -> Settings -> Appearance & Behavior -> System Settings**,启用插件以切换至中文模式。 --- #### 三、配置PyCharm 使用 Anaconda 环境 为了使 PyCharm 能够识别并使用 Anaconda 创建的虚拟环境,需执行以下操作: 1. 打开 PyCharm 后点击 **New Project** 或者进入现有项目右键选择 **Settings/Preferences**。 2. 在左侧导航栏找到 **Project: <Your_Project_Name> -> Python Interpreter**。 3. 点击齿轮图标,选择 **Add...**,随后弹出窗口中选择 **Existing Environment**。 4. 浏览到 Anaconda 默认路径下的 Python 可执行文件位置(通常位于 `C:\Users\<用户名>\Anaconda3\python.exe` 或 `/home/<用户名>/anaconda3/bin/python`)。 5. 如果需要创建新的 Conda 环境,则可以选择 **Create a new virtualenv environment with the specified settings**,指定基于 Conda 的解释器类型。 确认无误后保存更改即可让当前工程关联上所选定的运行时环境。 --- #### 四、测试配置是否生效 在一个空白脚本文件内编写如下代码片段: ```python print("Hello, World!") ``` 接着按快捷键组合 Shift+F10 或通过工具条上的绿色三角按钮来触发程序执行流程观察输出结果是否正常显示字符串消息。 --- #### 五、注意事项 - 若遇到无法加载模块的情况,请检查是否遗漏了必要的库安装指令;例如利用 pip 工具或者更推荐的方式即借助于 conda manager 实现自动化解决依赖关系问题。 - 对于初学者而言建议先熟悉基础语法再逐步深入探索高级特性以免造成不必要的困扰。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值