机器学习:回归分析—— 一元线性回归、多元线性回归的简单实现

本文介绍了回归分析的基本概念、作用和步骤,包括如何利用回归分析建立变量间的关系,以及通过线性回归模型解决预测问题。内容涵盖了从一元线性回归到多元线性回归的应用,通过实例展示了如何使用Python的sklearn库进行模型构建和预测,并探讨了模型评估的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归分析概述

基本概念

回归分析是处理多变量间相关关系的一种数学方法。相关关系不同于函数关系,后者反应变量间的严格依存性,而前者则表现出一定程度的波动性或随机性,一个自变量可以对应多个因变量。
回归分析和相关分析往往不加区分,广义上说,相关分析包括回归分析,但严格来说两者又是有区别的。相关分析常用回归分析来补充,两者相辅相成。若通过相关分析显示出变量间关系非常密切,则通过所建立的回归方程可获得相当准确的取值

可以解决的问题

1、建立变量间的数学表达式,通常称为经验公式
2、利用概率统计基础知识进行分析,从而判断所建立的经验公式的有效性
3、进行因素分析,确定影响某一变量的若干变量中,何者为主要, 何者为次要,以及他们之间的关系

基本步骤和分类

1、确定自变量、因变量并进行说明
2、进行回归分析
3、给出因变量和说明变量之间的关系,以公式形式给出
4、预测因变量的未来值
回归分析可以分为线性回归分析和非线性回归分析。
线性回归分析分为一元线性回归和多元线性回归。
非线性回归分析种类比较多,常用的有渐进回归、二次曲线、双曲线、逻辑回归等。
在这里插入图片描述

线性回归

一元线性回归

这里实现的是一个房价预测的例子,目的是根据房子的尺寸大小,预测房子的价格。现有数据如下,我们用来预测房屋在700平方英尺的时候预测一下价位。
数据类型:
在这里插入图片描述

 """
一元线性回归实例
房屋面积预测
"""

#需要的包
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import linear_model

#读取数据
def get_data(file_name):
    data = pd.read_csv(file_name)
    X_parameter = []
    Y_parameter = []
    for single_square_feet,single_price_value in zip(data['square_feet'],data['price']):
        #遍历数据
        X_parameter.append([float(single_square_feet)])
        Y_parameter.append([float(single_price_value)])
    return X_parameter,Y_parameter

#数据拟合,建立线性模型
def linear_model_main(X_parameter,Y_parameter,predict_value):
    #创建线性回归对象
    regr = linear_model.LinearRegression()
    #训练模型
    regr.fit(X_parameter,Y_parameter)
    #把要预测的数值放进去训练好的模型进行预测
    predict_outcome = regr.predict(list([[predict_value]]))
    #创建一个预测结果的字典
    predictions = {}
    #把预测结果加入到字典中
    #intercept-截距值a;coefficient-系数b;predicted_value-预测结果值
    predictions['intercept'] = regr.intercept_
    predictions['coefficient'] = regr.coef_
    predictions['predicted_value'] = predict_outcome
    return predictions


#输入数据,训练模型
X,Y = get_data(r"F:\小组\Python\input_data.csv")
predict_value = 700
result = linear_model_main(X,Y,predict_value)
print("Intercept value:",result['intercept'])
print("Coefficient:",result['coefficient'])
print("Predicted value:",result['predicted_value'])  

在这里插入图片描述

#显示拟合效果图
def show_linear_line(X_parameter,Y_parameter):
    #创建线性回归对象
    regr = linear_model.LinearRegression()
    regr.fit(X_parameter,Y_parameter)
    plt.figure()
    plt.scatter(X_parameter,Y_parameter,color = 'blue')
    plt.plot(X_parameter,regr.predict(X_parameter),color = 'red',linewidth = 4)
    plt.xticks(())
    plt.yticks(())
    plt.show()

show_linear_line(X,Y)

在这里插入图片描述
一元线性回归的实现主要是调用sklearn.linear_model里的LinearRegression()函数,拟合用fit()函数,预测用predict()函数,.intercept_截距值a;.coefficient_系数b

多元线性回归

准备数据集Advertising.csv

https://github.com/Columbia-Intro-Data-Science/python-introduction-caitlinwang/blob/master/www-bcf.usc.edu/~gareth/ISL/Advertising.csv

TV:在电视上投资的广告费
Radio:在广播上投资的广告费
Newapaper:用于报纸媒体的广告费
Sales:对应产品销量
在这里插入图片描述

"""
多元线性回归
"""

#需要的包
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

#这里推荐的是seaborn包,这个包的数据据可视化效果比较好,
#seaborn包也属于Matplotlib的内部包,只是需要单独安装
import seaborn as sns
import matplotlib.pyplot as plt
#用来划分数据集
#from sklearn.cross_validation import train_test_split
#用来构建模型
from sklearn.linear_model import LinearRegression

#导入数据
data = pd.read_csv(r"F:\小组\Python\Advertising.csv")
#使用散点图将特征与响应之间的关系可视化出来
#观察单个自变量和因变量之间的相关程度

#pairplot 画两两特征图
#http://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot
#size和aspect参数调节显示的大小和比例;kind='reg'添加一条最佳拟合直线和95%的置信带
sns.pairplot(data,x_vars = ['TV','Radio','Newspaper'],y_vars = 'Sales',size = 7,aspect = 0.8,kind = 'reg')
plt.show()

在这里插入图片描述
使用pandas构建X(特征向量)和y(标签列)
scihit-learn要求X是一个特征矩阵,y是一个Numpy向量。pandas构建在Numpy之上,因此X可以是pandas的 DataFrame,y可以是pandas的Series

#创建特征列表
feature_cols = ['TV','Radio','Newspaper']
#使用列表选择原始DataFrame的子集
#下面两种返回形式一样
X = data[feature_cols]

X = data[['TV','Radio','Newspaper']]
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 1)
#构建线性回归模型
linreg = LinearRegression()
model = linreg.fit(X_train,y_train)
print(model)
print(linreg.intercept_)
print(linreg.coef_)

在这里插入图片描述

#预测
y_pred = linreg.predict(X_test)
print(y_pred)
print(type(y_pred))

在这里插入图片描述

#评估模型
#计算sales预测的RMSE均方根误差
print(type(y_pred),type(y_test))
print(len(y_pred),len(y_test))
print(y_pred.shape,y_test.shape)

sum_mean = 0
for i in range(len(y_pred)):
    sum_mean += (y_pred[i] - y_test.values[i]) ** 2
    sum_erro = np.sqrt(sum_mean/50)
print("RMSE by hand:",sum_erro)

在这里插入图片描述

#绘制ROC曲线
import matplotlib.pyplot as plt
plt.figure()
plt.plot(range(len(y_pred)),y_pred,'b',label = 'predict')
plt.plot(range(len(y_pred)),y_test,'r',label = 'test')
plt.legend(loc = 'upper right')
plt.xlabel("the number of sales")
plt.ylabel("value of sales")
plt.show()

在这里插入图片描述
多元线性回归模型的构建与简单一元线性回归一样调用的是sklearn.linear_model里的LinearRegression()函数

对于sklearn.model_selection的train_test_split()函数这是经常用到的用来划分训练集与测试集的一种方法,一般模型的建立不只是建立那么简单,还要对预测的效果进行评估,保证其准确率

ROC曲线也是在机器学习领域经常用到的用来反映拟合效果的图像,是非常重要和常见的统计分析方法,反应的是在几种不同的判定标准下对同一信号刺激所得的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值