回归分析概述
基本概念
回归分析是处理多变量间相关关系的一种数学方法。相关关系不同于函数关系,后者反应变量间的严格依存性,而前者则表现出一定程度的波动性或随机性,一个自变量可以对应多个因变量。
回归分析和相关分析往往不加区分,广义上说,相关分析包括回归分析,但严格来说两者又是有区别的。相关分析常用回归分析来补充,两者相辅相成。若通过相关分析显示出变量间关系非常密切,则通过所建立的回归方程可获得相当准确的取值
可以解决的问题
1、建立变量间的数学表达式,通常称为经验公式
2、利用概率统计基础知识进行分析,从而判断所建立的经验公式的有效性
3、进行因素分析,确定影响某一变量的若干变量中,何者为主要, 何者为次要,以及他们之间的关系
基本步骤和分类
1、确定自变量、因变量并进行说明
2、进行回归分析
3、给出因变量和说明变量之间的关系,以公式形式给出
4、预测因变量的未来值
回归分析可以分为线性回归分析和非线性回归分析。
线性回归分析分为一元线性回归和多元线性回归。
非线性回归分析种类比较多,常用的有渐进回归、二次曲线、双曲线、逻辑回归等。
线性回归
一元线性回归
这里实现的是一个房价预测的例子,目的是根据房子的尺寸大小,预测房子的价格。现有数据如下,我们用来预测房屋在700平方英尺的时候预测一下价位。
数据类型:
"""
一元线性回归实例
房屋面积预测
"""
#需要的包
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import linear_model
#读取数据
def get_data(file_name):
data = pd.read_csv(file_name)
X_parameter = []
Y_parameter = []
for single_square_feet,single_price_value in zip(data['square_feet'],data['price']):
#遍历数据
X_parameter.append([float(single_square_feet)])
Y_parameter.append([float(single_price_value)])
return X_parameter,Y_parameter
#数据拟合,建立线性模型
def linear_model_main(X_parameter,Y_parameter,predict_value):
#创建线性回归对象
regr = linear_model.LinearRegression()
#训练模型
regr.fit(X_parameter,Y_parameter)
#把要预测的数值放进去训练好的模型进行预测
predict_outcome = regr.predict(list([[predict_value]]))
#创建一个预测结果的字典
predictions = {}
#把预测结果加入到字典中
#intercept-截距值a;coefficient-系数b;predicted_value-预测结果值
predictions['intercept'] = regr.intercept_
predictions['coefficient'] = regr.coef_
predictions['predicted_value'] = predict_outcome
return predictions
#输入数据,训练模型
X,Y = get_data(r"F:\小组\Python\input_data.csv")
predict_value = 700
result = linear_model_main(X,Y,predict_value)
print("Intercept value:",result['intercept'])
print("Coefficient:",result['coefficient'])
print("Predicted value:",result['predicted_value'])
#显示拟合效果图
def show_linear_line(X_parameter,Y_parameter):
#创建线性回归对象
regr = linear_model.LinearRegression()
regr.fit(X_parameter,Y_parameter)
plt.figure()
plt.scatter(X_parameter,Y_parameter,color = 'blue')
plt.plot(X_parameter,regr.predict(X_parameter),color = 'red',linewidth = 4)
plt.xticks(())
plt.yticks(())
plt.show()
show_linear_line(X,Y)
一元线性回归的实现主要是调用sklearn.linear_model里的LinearRegression()函数,拟合用fit()函数,预测用predict()函数,.intercept_截距值a;.coefficient_系数b
多元线性回归
准备数据集Advertising.csv
TV:在电视上投资的广告费
Radio:在广播上投资的广告费
Newapaper:用于报纸媒体的广告费
Sales:对应产品销量
"""
多元线性回归
"""
#需要的包
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
#这里推荐的是seaborn包,这个包的数据据可视化效果比较好,
#seaborn包也属于Matplotlib的内部包,只是需要单独安装
import seaborn as sns
import matplotlib.pyplot as plt
#用来划分数据集
#from sklearn.cross_validation import train_test_split
#用来构建模型
from sklearn.linear_model import LinearRegression
#导入数据
data = pd.read_csv(r"F:\小组\Python\Advertising.csv")
#使用散点图将特征与响应之间的关系可视化出来
#观察单个自变量和因变量之间的相关程度
#pairplot 画两两特征图
#http://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot
#size和aspect参数调节显示的大小和比例;kind='reg'添加一条最佳拟合直线和95%的置信带
sns.pairplot(data,x_vars = ['TV','Radio','Newspaper'],y_vars = 'Sales',size = 7,aspect = 0.8,kind = 'reg')
plt.show()
使用pandas构建X(特征向量)和y(标签列)
scihit-learn要求X是一个特征矩阵,y是一个Numpy向量。pandas构建在Numpy之上,因此X可以是pandas的 DataFrame,y可以是pandas的Series
#创建特征列表
feature_cols = ['TV','Radio','Newspaper']
#使用列表选择原始DataFrame的子集
#下面两种返回形式一样
X = data[feature_cols]
X = data[['TV','Radio','Newspaper']]
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 1)
#构建线性回归模型
linreg = LinearRegression()
model = linreg.fit(X_train,y_train)
print(model)
print(linreg.intercept_)
print(linreg.coef_)
#预测
y_pred = linreg.predict(X_test)
print(y_pred)
print(type(y_pred))
#评估模型
#计算sales预测的RMSE均方根误差
print(type(y_pred),type(y_test))
print(len(y_pred),len(y_test))
print(y_pred.shape,y_test.shape)
sum_mean = 0
for i in range(len(y_pred)):
sum_mean += (y_pred[i] - y_test.values[i]) ** 2
sum_erro = np.sqrt(sum_mean/50)
print("RMSE by hand:",sum_erro)
#绘制ROC曲线
import matplotlib.pyplot as plt
plt.figure()
plt.plot(range(len(y_pred)),y_pred,'b',label = 'predict')
plt.plot(range(len(y_pred)),y_test,'r',label = 'test')
plt.legend(loc = 'upper right')
plt.xlabel("the number of sales")
plt.ylabel("value of sales")
plt.show()
多元线性回归模型的构建与简单一元线性回归一样调用的是sklearn.linear_model里的LinearRegression()函数
对于sklearn.model_selection的train_test_split()函数这是经常用到的用来划分训练集与测试集的一种方法,一般模型的建立不只是建立那么简单,还要对预测的效果进行评估,保证其准确率
ROC曲线也是在机器学习领域经常用到的用来反映拟合效果的图像,是非常重要和常见的统计分析方法,反应的是在几种不同的判定标准下对同一信号刺激所得的结果。