梯度下降法(Gradient Descent)是一种用于优化目标函数的迭代优化算法,特别常用于机器学习和深度学习中,用于调整模型参数以最小化或最大化某个损失函数。其核心思想是通过计算目标函数关于参数的梯度(导数),然后朝着梯度下降最陡峭的方向来更新参数,从而逐渐接近或到达目标函数的最小值。
下面是梯度下降法的一般步骤:
1. 初始化参数:首先,为模型的参数(权重和偏差)选择初始值。
2. 计算梯度:使用目标函数对参数进行偏导数计算梯度,这告诉我们参数需要朝哪个方向调整以减小目标函数值。
3. 更新参数:将参数朝着负梯度方向移动一小步,称为学习率(learning rate)的倍数。这个学习率是一个超参数,决定了每次迭代中参数更新的幅度。
4. 重复:重复步骤2和3,直到满足停止条件,如达到最大迭代次数、目标函数收敛等。
梯度下降法有几种变体,包括批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent),以及小批量梯度下降(Mini-Batch Gradient Descent)。这些变体的区别在于每次迭代使用的数据点数量。
梯度下降法的成功依赖于合适的学习率的选择,如果学习率太小,收敛速度可能会很慢,而如果学习率太大,可能会导致不稳定的收敛甚至发散。此外,梯度下降法也可能受到局部最优解的困扰,因为它只能找到目标函数的局部极小值。因此,人们通常结合其他技巧,如学习率调度、动量法、和自适应学习率等,以提高梯度下降法的性能。