Hadoop数据压缩_学习笔记

本文探讨了Hadoop中数据压缩的策略,包括压缩/解压缩速度、压缩率与切片支持的权衡,以及LZO、Gzip、Bzip2和Snappy等不同编码的优缺点。重点讲解了如何根据任务类型选择压缩方式,并提供了压缩启用位置和参数配置的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadoop数据压缩

  • 概述

    • 优点:以减少磁盘IO,减少磁盘储存空间
    • 缺点:增加CPU开销
  • 压缩原则

    • 运算密集型的·Job,少用压缩
    • IO密集型的Job,多用压缩
  • MR支持的压缩编码

    • 压缩算法对比介绍
      在这里插入图片描述
    • 压缩性能的比较在这里插入图片描述
  • 压缩方式选择

    • 压缩方式选择时重点考虑:压缩、解压缩速度、压缩率(压缩后储存大小)、压缩后是否可以支持切片
    • Gzip压缩
      • 优点:压缩率比较高
      • 缺点:不支持切片,压缩、解压缩速度一般
    • Bzip2压缩
      • 优点:压缩率高,支持切片
      • 缺点:压缩/解压缩速度慢
    • Lzo压缩
      • 优点:压缩/解压缩速度比较快,支持切片
      • 缺点:压缩速率一般,想支持切片需要额外创建索引
    • Snappy压缩
      • 优点:压缩和解压缩速度快
      • 缺点:不支持切片,压缩率一般
  • 压缩位置选择

    • 压缩可以在MapReduce作用的任意阶段启用在这里插入图片描述
  • 压缩参数配置

    • 为了支持多种压缩/解压缩算法,Hadoop引入编码和解码器在这里插入图片描述

    • 要在Hadoop中启用压缩,可以配置如下参数在这里插入图片描述

  • 注意:

    • 即使你的MapReduce的输出输入文件都是为压缩的文件,你仍然可以对Map任务的中间结果输出做出压缩,因为它要写在硬盘并且通过网络传输到Reduce节点,对其压缩可以提高很多性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值