当 ML 遇到 DevOps:如何理解 MLOps

本文探讨了人工智能和机器学习的广泛应用,以及MLOps如何通过DevOps原则加速ML项目的管理。MLOps涉及数据收集、模型开发、部署监控等多个环节,并强调了版本控制、自动化测试和模型治理等关键实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,人工智能 (AI) 和机器学习 (ML) 已经席卷全球,几乎成为任何行业的重要组成部分,从零售和娱乐到医疗保健和银行业。这些技术能够通过分析大量数据实现运营自动化、降低成本和促进决策,从而从根本上改变企业。最近,AI 和 ML 项目的数量急剧增加,这给有效的 ML 项目管理带来了困难。这就是 MLOps 进入科技行业中心舞台的方式。

什么是 MLOps?

MLOps,即机器学习操作,是一种优化 ML 生命周期的方法,以加速 AI 驱动的应用程序的创建。它遵循类似 DevOps 的技术,用于在 ML 领域进行快速可靠的软件开发。MLOps 与 DevOps 一样,可以促进协作思维,使数据科学家、软件工程师和数据专家之间能够持续沟通。它涵盖了 ML 过程的所有方面,从数据收集和模型创建到最终部署和持续的项目增强。

人工智能和机器学习到底是什么?

尽管它们关系密切,但 AI 和 ML 是两个不同的概念,不应混淆。人工智能是一个总称,涵盖了使计算机系统模仿人类智能的各种方法和技术。反过来,ML是AI的一个子领域,它允许计算机自动从结构化数据中学习。它专注于使用大型数据集训练算法,以创建复杂的 ML 模型,这些模型能够执行复杂的任务,例如分析大数据、对图像进行排序和生成类似人类的语音。

ML 生命周期包括哪些内容?

几乎所有的ML项目在其周期性生命周期中都会经历以下阶段:

  • 数据采集: 创建高质量的数据集是 ML 生命周期的重要组成部分,其中包括收集文本、图像、声音或视频等数据。
  • 数据准备和整理:随机化,将数据组织到数据集中,删除错误和重复项,并将其转换为可用的格式。
  • 模型开发:选择有效的模型架构,创建模型,在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值