近年来,人工智能 (AI) 和机器学习 (ML) 已经席卷全球,几乎成为任何行业的重要组成部分,从零售和娱乐到医疗保健和银行业。这些技术能够通过分析大量数据实现运营自动化、降低成本和促进决策,从而从根本上改变企业。最近,AI 和 ML 项目的数量急剧增加,这给有效的 ML 项目管理带来了困难。这就是 MLOps 进入科技行业中心舞台的方式。
什么是 MLOps?
MLOps,即机器学习操作,是一种优化 ML 生命周期的方法,以加速 AI 驱动的应用程序的创建。它遵循类似 DevOps 的技术,用于在 ML 领域进行快速可靠的软件开发。MLOps 与 DevOps 一样,可以促进协作思维,使数据科学家、软件工程师和数据专家之间能够持续沟通。它涵盖了 ML 过程的所有方面,从数据收集和模型创建到最终部署和持续的项目增强。
人工智能和机器学习到底是什么?
尽管它们关系密切,但 AI 和 ML 是两个不同的概念,不应混淆。人工智能是一个总称,涵盖了使计算机系统模仿人类智能的各种方法和技术。反过来,ML是AI的一个子领域,它允许计算机自动从结构化数据中学习。它专注于使用大型数据集训练算法,以创建复杂的 ML 模型,这些模型能够执行复杂的任务,例如分析大数据、对图像进行排序和生成类似人类的语音。
ML 生命周期包括哪些内容?
几乎所有的ML项目在其周期性生命周期中都会经历以下阶段:
- 数据采集: 创建高质量的数据集是 ML 生命周期的重要组成部分,其中包括收集文本、图像、声音或视频等数据。
- 数据准备和整理:随机化,将数据组织到数据集中,删除错误和重复项,并将其转换为可用的格式。
- 模型开发:选择有效的模型架构,创建模型,在