torch之训练过程

本文详细介绍了如何在PyTorch中使用CPU和GPU进行深度学习模型的训练,包括`train()`函数的运用,分别阐述了两种硬件环境下的训练步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch之训练过程train()

1.cpu版本

import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
from torch.utils.data import DataLoader

# 1.准备数据集
train_data = torchvision.datasets.CIFAR10(root='./dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                          download=True)
# length
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))  #50000
print("测试数据集的长度为:{}".format(test_data_size))  #10000

#加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 2.搭建神经网络(model.py)
# 3.创建网络模型
firstmodel = FirstModel()
# 4.创建损失函数
loss_fn = nn.CrossEntropyLoss()
#5.优化器
learning_rate = 0.01
optimzer = torch.optim.SGD(params=firstmodel.parameters(), lr=learning_rate)

# 6.设置训练网络的一些参数
# 记录训练次数
total_train_step = 0
# 记录训练次数
total_test_step = 0
# 记录训练轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("./logs")
for i in range(epoch):
    print("—————————————第{}轮训练开始————————————".format(i + 1))

    # 训练步骤开始
    fi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值