自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(209)
  • 收藏
  • 关注

原创 逐步推理错误干扰(Stepwise rEasoning Error Disruption)

理解“Stepwise Reasoning Error Disruption”有助于在设计算法、编写测试、构建模型或进行任何复杂的分步任务时,更加警惕错误传播的风险,并主动采取措施来预防和缓解它。我们来把“Stepwise Reasoning Error Disruption”(逐步推理错误干扰)掰开揉碎,先讲得明明白白,再深入专业层面。“Stepwise Reasoning Error Disruption” 描述的是在。

2025-06-11 07:23:43 460

原创 网络安全中的沙箱

沙箱是网络安全中的“数字显微镜”,通过隔离与监控,将未知威胁控制在安全边界内。然而,攻防对抗永无止境,现代沙箱需持续进化,结合AI、行为基因分析等技术,才能应对日益复杂的威胁。想象你有一个“魔法玻璃箱”,你可以把可疑的文件或程序丢进去运行。无论这个程序在箱子里怎么折腾(比如删除文件、联网、加密数据),都不会影响到你真实的电脑。——一个隔离的虚拟环境,专门用来安全地观察和分析危险行为,就像科学家在实验室里研究病毒一样。,通过虚拟化或模拟技术,限制程序对真实系统资源的访问。沙箱(Sandbox)是一种。

2025-05-13 11:39:22 1147

原创 模型水印与数字签名

模型水印更侧重于保护 AI 模型本身的知识产权,通过在模型中隐藏信息来证明所有权。而数字签名则更侧重于验证数字内容的完整性和来源的可信性,通过密码学的方式确保内容没有被篡改。希望这个解释清晰易懂。如果您想了解更多细节,例如它们具体是如何实现的,或者在特定场景下的应用,请随时告诉我!模型水印和数字签名是两种不同的技术,用于验证和保护数字内容的完整性和真实性,但它们的应用场景和侧重点不同。简单来说,模型水印是给模型“打上标签”证明所有权,而数字签名是给内容“盖上印章”证明其真实性。

2025-05-10 09:10:20 237

原创 验证协同学习

模型有效性:聚合后的全局模型在参与方的本地数据上表现一致且可靠;安全性:防止恶意参与方通过伪造参数或测试结果破坏系统;隐私性:验证过程中不泄露各参与方的本地数据或模型细节。如何让数据保持沉默,却让模型开口说真话。

2025-05-10 09:09:28 865

原创 zk-SNARKs零知识证明

zk-SNARKs是一套融合了椭圆曲线密码学、多项式承诺和零知识交互的复杂协议,其核心是通过数学变换将任意计算问题压缩为一个可在毫秒内验证的密码学证明。尽管面临可信设置和量子威胁等挑战,它仍是当前平衡**隐私**、**效率**与**通用性**的最佳方案之一。理解zk-SNARKs需要跨越密码学、代数与系统编程的鸿沟,但其潜力在区块链、金融与国防等领域无可替代。

2025-05-10 08:09:45 886

原创 基于查询的蒸馏攻击

基于查询的蒸馏攻击是一种强大的黑盒攻击手段,它利用对目标模型API的查询权限来复制模型的功能。基于查询的蒸馏攻击(Query-based Model Extraction Attack)是一种针对机器学习模型的可行性攻击,其目标是利用对目标模型的API(应用程序接口)的查询权限,重构一个功能等同或近似于目标模型的模型。基于查询的蒸馏攻击就是这样,攻击者通过不断地给目标模型输入数据并获取输出,来学习目标模型的行为,最终构建一个功能类似的模型,而无需知道目标模型的内部结构或训练数据。

2025-05-09 15:56:14 530

原创 姚期智百万富翁问题

混淆电路的基本思想是将一个计算函数表示为一个逻辑电路,然后对这个电路进行加密和变形,使得一方(Alice,电路的创建者)可以在不泄露电路结构的情况下将其发送给另一方(Bob,电路的执行者)。Bob 收到混淆电路后,用自己的加密输入在混淆电路上进行“盲”计算,最终得到加密的输出。例如,两家公司想比较他们的年度利润,但都不想向对方透露具体的利润数字。尽管有这些局限性,混淆电路仍然是安全多方计算领域的重要基石,并不断有新的优化和改进方案出现,以提高其效率和适用性。的结果,从而得知了比较结果,但她也不知道。

2025-05-08 22:29:08 838

原创 Schnorr 身份识别协议

如果一个敌手能够伪造 Schnorr 签名,那么他就能以不可忽略的概率在 Schnorr 身份识别协议中冒充合法用户,从而能够提取出私钥,这与离散对数问题的困难性相矛盾。这个协议是一种非常经典且高效的交互式身份证明协议,也是构建 Schnorr 签名方案的基础。,并且 Bob 和 Alice 都诚实地遵循协议,那么验证阶段的等式一定成立,Bob 会接受 Alice 的身份证明。Bob 在协议执行完成后,除了知道 Alice 确实拥有私钥外,没有学到关于私钥本身的任何额外信息。如果 Alice 不知道私钥。

2025-05-08 11:29:08 538

原创 概率分布的不可区分和无限逼近

如果这两个箱子里的东西看起来非常相似,你很难通过观察或抽取几个样本来判断哪个箱子是哪个,那么我们就说这两个箱子里的东西的“分布是不可区分的”。在密码学中,这里的“箱子”通常指的是由不同的输入(比如不同的密钥、不同的明文)生成的输出(比如密文、哈希值、随机数序列)。此外,在证明两个分布是计算不可区分时,我们经常需要进行概率分析,分析随着参数增大时,区分者成功的概率如何趋近于某个值(例如 1/2 或一个可忽略的量)。无限逼近更多的是一个数学分析的概念,用来描述当某个变量趋向于无穷大时,函数或序列的行为。

2025-05-08 11:15:57 802

原创 有关门罗币

与比特币等许多主流加密货币不同,门罗币的交易记录在区块链上是高度混淆的,难以追踪。想象一下,比特币就像一个公共的账本,你和我在上面做的每一笔交易,虽然没有直接写上名字,但通过一些信息(比如地址)是很容易被追踪到的。由于环签名、隐身地址和环机密交易的使用,观察者在区块链上看到的交易信息是高度混淆的,很难将具体的发送方、接收方和交易金额关联起来。所以,如果你特别看重交易的隐私性,不希望别人知道你什么时候、给谁转了多少钱,门罗币就是一个被设计用来实现这个目的的加密货币。

2025-05-08 10:51:39 417

原创 二次非剩余问题

二次非剩余问题是一个在模合数下,判断一个数是否是另一个数的平方的模同余的计算难题。它的困难性与分解大整数问题紧密相关,并被用作构建一些重要密码学算法和协议的基础,以提供安全性和证明某些属性。这个问题在数论和密码学中都有重要的应用,尤其是与一些加密算法的安全性和难题构建相关。二次非剩余问题(Quadratic Non-Residue Problem, QNRP)是数论中的一个计算难题,尤其是在模合数的情况下。是一个合数,特别是像RSA密码系统那样是两个大素数的乘积。之后,余数是另一个我们指定的数。

2025-05-08 10:50:36 616

原创 RSA 加密和 RSA 数字签名

RSA 加密和 RSA 数字签名是 RSA 算法的两种主要应用,它们都基于非对称密钥对和模幂运算,但在目的、密钥使用方向、操作对象以及提供的安全服务上存在显著差异。加密提供机密性,而签名提供真实性、完整性和不可否认性。在实际应用中,它们经常结合使用以提供更全面的安全保障。这样做可以同时实现机密性(只有接收方能读)和身份认证/完整性(接收方能确认消息来源和未被篡改)。是的,可以对同一条消息先进行签名,再进行加密(通常是先签名,然后将消息和签名一起加密)。

2025-05-08 06:59:52 1182

原创 有关同模攻击

攻击者截获了 C_Bob 和 C_Charlie,并且知道 Bob 和 Charlie 的公钥 (n, e_Bob) 和 (n, e_Charlie)。假设 Alice 使用 Bob 的公钥 (n, e_Bob) 加密消息 M 得到 C_Bob = M^e_Bob mod n,而 Carol 使用 Charlie 的公钥 (n, e_Charlie) 加密。它利用了在某些不安全的使用场景下,多个用户使用了相同的模数 n,但拥有不同的公钥指数 e 和私钥指数 d。请注意,s1 和 s2 中可能有一个是负数。

2025-05-07 22:31:10 483

原创 哈希函数中的海绵结构

海绵结构是一种强大的密码学构造,它使用一个核心的置换函数或变换函数来处理输入并生成输出。其独特的吸收和挤出两阶段设计,以及容量比特的存在,使得它具有良好的抗长度扩展攻击能力,并且可以灵活地构建多种密码学原语。SHA-3 及其 SHAKE 变体是海绵结构最成功的应用案例,为密码学哈希算法提供了一个不同于传统 Merkle–Damgård 构造的、更安全的替代方案。海绵结构是一种通用的密码学原语构造方式,它可以使用一个固定的。海绵结构的灵感来自于海绵吸收液体并挤出液体的过程,因此得名。

2025-05-06 21:03:27 1096

原创 知识蒸馏总结

知识蒸馏是一种模型压缩技术,旨在将一个大型、复杂的预训练模型(称为教师模型 Teacher Model)的知识迁移到一个小型、简单的模型(称为学生模型 Student Model)中,使得学生模型在保持较低计算资源消耗的同时,尽可能地接近教师模型的性能。尽管学生模型比老师模型小,但通过学习老师的“软知识”,它通常能比直接用硬标签训练的小模型表现得更好,性能更接近大型的老师模型,同时保持了小模型的计算效率优势。知识蒸馏的关键在于利用教师模型的输出作为学生模型的训练目标,而不仅仅是原始数据的真实标签。

2025-05-03 12:34:43 474

原创 DAC MAC和RBAC的比较

是三种常见的访问控制模型,它们在权限管理的方式和应用场景上有所不同。下面我们从多个角度比较这三种模型。理解这三种模型的区别和应用场景,可以帮助你更好地设计和实现访问控制机制!

2025-03-02 11:34:33 478

原创 为什么说strcpy不安全?

的不安全性源于其缺乏自动边界检查,导致潜在的缓冲区溢出和安全漏洞。通过使用更安全的替代函数和仔细的内存管理,可以有效减少这些风险。函数在C语言中被认为不安全的原因在于它缺乏对目标缓冲区大小的检查,导致可能发生缓冲区溢出。

2025-02-28 12:34:10 410

原创 C语言十进制转化为二进制

现在得弄清楚如何在C语言中把十进制数转成二进制。首先,我得回忆一下二进制是怎么来的。二进制就是由0和1组成的数,每一位代表2的幂次方。那十进制转二进制的基本方法是什么呢?好像有除二取余法,对吧?那具体步骤应该是怎么样的呢?我记得应该是不断地用十进制数除以2,记录每次的余数,然后把余数倒序排列起来就是二进制数了。比如说,十进制数13,除以2得6余1,然后6除以2得3余0,接着3除以2得1余1,最后1除以2得0余1。把余数倒过来就是1101,也就是13的二进制表示。那接下来我得把这个思路转化成C代码。

2025-02-15 18:15:13 1281

原创 队列的基本操作(C语言)

if (q->front == NULL) { // 如果队列变空,更新队尾指针。// 将新节点添加到队尾。if (q->front == NULL) { // 判断队列是否为空。if (q->rear == NULL) { // 队列为空。// 可以根据需求返回不同的错误值。// 释放出队节点的内存。// 检查队列是否为空。// 测试队列基本操作。// 队列节点结构体。

2025-02-11 15:14:56 426

原创 动态规划与一维数组

这些例子说明,一维动态规划可以解决多种问题,但选择一维数组的关键在于能够巧妙地设计状态和状态转移方程,有时需要一些技巧,例如滚动数组,来处理依赖关系。状态转移方程:这需要跟踪上一行的最小路径和,从概念上来说,使用二维数组更容易,但是可以通过巧妙地管理一维数组并从右到左或从左到右迭代来完成。(这是一个简化,更准确的表示可能需要二维数组,但我们可以通过巧妙的索引使用一维数组来实现解决方案。问题描述:给定一个整数数组 nums,找到其中一个具有最大和的连续子数组(子数组至少包含一个元素),并返回其最大和。

2025-01-25 08:38:49 1218

原创 动态规划总结(二维数组)

记住,选择使用二维动态规划的关键在于能够将问题分解成子问题,并且子问题的解可以有效地用二维数组表示和访问。例如,A = {1, 3, 2, 4, 5},B = {3, 4, 1, 5, 2},LCIS 是 {3, 4, 5}。每次合并相邻的两堆石子,合并的代价是这两堆石子的总个数。问题描述: 在一个 m x n 的网格中,从左上角 (0, 0) 到右下角 (m-1, n-1) 的路径数量,只能向下或向右移动。问题描述:给定一个 m x n 的矩阵,找到一个子矩阵,使得该子矩阵中所有元素之和最大。

2025-01-25 08:35:41 716

原创 DDos攻击

DDoS(分布式拒绝服务)攻击是一种恶意网络攻击,通过利用大量的受感染的计算机(僵尸网络)向目标服务器或网络发送大量的流量,从而导致目标系统无法正常响应合法用户的请求。攻击的流量通常是伪造的,源自多个不同的IP地址,这使得追踪和防御攻击变得非常困难。攻击手段多种多样,包括SYN泛洪、UDP泛洪、HTTP泛洪等,这些攻击会消耗目标系统的带宽、计算资源和网络连接,最终导致服务中断或性能严重下降。没有单一的解决方案可以完全防止所有类型的DDoS攻击,需要采取多方面防御策略,并根据攻击的演变不断调整和改进。

2025-01-01 21:14:01 577

原创 日志洪水的概念

日志洪水指的是日志系统产生的日志数据量超过系统能够处理或存储的能力,导致系统性能下降、资源耗尽甚至瘫痪的情况。这就像水坝决堤一样,大量的日志信息涌入,系统无法及时处理和消化。如何预防和解决日志洪水?

2024-12-30 12:20:36 211

原创 ARP欺骗、DNS欺骗和Web欺骗

这三种欺骗攻击经常被组合使用,例如,攻击者可能先使用ARP欺骗控制局域网内流量,再使用DNS欺骗将受害者引导到钓鱼网站。理解它们的原理和区别,有助于更好地采取防御措施。ARP欺骗、DNS欺骗和Web欺骗都是网络攻击技术,旨在劫持网络流量或操纵用户访问受损的资源。

2024-12-30 11:57:35 502

原创 病毒防范方法

对组织或个人的信息系统进行全面的风险评估,识别潜在的威胁和漏洞,并制定相应的安全策略。根据风险评估结果,制定优先级,针对高危资产和高危漏洞采取更有力的防护措施。没有一种方法是万能的,需要一个综合性的安全策略才能有效地防范病毒和其他恶意软件。使用专业的网络安全设备,如防火墙、入侵检测/防御系统等,来监控和阻止网络攻击。对第三方供应商的安全水平进行评估,并制定相应的安全管理措施。定期进行安全审计,以评估安全策略的有效性,并识别需要改进的地方。定期审查安全策略和技术,并根据新的威胁和漏洞进行调整。

2024-12-30 10:22:32 531

原创 常见恶意代码

NotPetya 虽然会加密文件,但其主要目标并非勒索赎金,而是造成大范围的系统破坏,对全球企业造成了巨大的经济损失。Stuxnet 的显著特点在于其高度的复杂性和针对性,它利用了多个零日漏洞,并且具备自我传播和隐藏能力。它利用物联网设备的弱密码和安全漏洞,将这些设备变成僵尸网络的一部分,用于发起大规模的分布式拒绝服务 (DDoS) 攻击。Flame 的目标是中东地区,它具有高度的隐蔽性和持续性,能够长期潜伏在受感染的系统中。一旦运行,木马就会在后台静默运行,执行恶意操作,而用户通常不会察觉到它的存在。

2024-12-30 10:22:08 896

原创 0day漏洞

发现和利用0day漏洞通常需要高超的技术水平和深入的安全知识。由于其隐蔽性和缺乏公开信息,0day漏洞的修复依赖于软件供应商的快速响应和补丁发布。许多重大的网络安全事件都与0day漏洞有关,例如Stuxnet病毒、NotPetya勒索软件和SolarWinds黑客攻击事件,这些事件都造成了巨大的经济损失和社会影响。( 具体案例细节较长,如有需要可以再深入探讨。“0day” 指的是从漏洞被发现到被修复之间的时间为零天,强调其突发性和危险性。攻击者利用0day漏洞的方法取决于漏洞的具体类型和目标系统。

2024-12-25 11:46:44 551

原创 公钥与密钥

包含公钥和相关信息的数字文件,由证书颁发机构 (Certificate Authority, CA) 签署,用于验证公钥的真实性。目前,对于足够大的 n (例如,至少2048位),分解 n 在计算上是不可行的。公钥和私钥是密码学中非对称加密的核心概念,它们是一对数学相关的密钥,一个用于加密(公钥),另一个用于解密(私钥)。它用于解密用公钥加密的消息,也可以用于数字签名,证明消息的真实性和完整性。甲使用自己的私钥对消息进行签名,然后将签名后的消息发送给乙。甲使用乙的公钥加密消息,然后发送给乙。

2024-12-25 11:03:50 1500

原创 二叉树递归算法求树高

O(H),其中 H 是树的高度。空间复杂度主要取决于递归调用的栈深度,最坏情况下,栈深度等于树的高度。对于平衡树,H = log₂N;对于退化成链表的树,H = N。二叉树的递归算法求树高,核心思想是利用二叉树的递归定义:树的高度等于左子树高度和右子树高度中的较大者,再加1(1代表根节点)。O(N),其中 N 是树中节点的个数。因为每个节点都被访问一次。对于非空节点,分别递归计算其左子树和右子树的高度,记为。,取决于你的编程语言),则返回0,因为空树的高度为0。是为了加上当前节点自身。

2024-12-20 11:43:32 494

原创 线性代数谱分解

λₙPₙ,其中 Pᵢ 是到特征向量 vᵢ 所张成的特征子空间的投影矩阵 (Pᵢ = uᵢuᵢᵀ, uᵢ 是标准化的特征向量)。奇异值分解适用于任何矩阵 (包括非方阵),它将矩阵分解为三个矩阵的乘积: A = UΣVᵀ,其中 U 和 V 是酉矩阵 (对于实数矩阵是正交矩阵),Σ 是一个对角矩阵,其对角元素是矩阵 A 的奇异值。基于上述性质,我们可以证明对称矩阵 A 存在一个由其标准正交特征向量组成的矩阵 P,使得 PᵀAP = D,其中 D 是一个对角矩阵,其对角元素是 A 的特征值。

2024-12-05 15:48:50 1555

原创 NAT路由器与目的地址变化

NAT路由器的IP地址变化主要与公网IP地址的分配方式以及路由器的重启或配置更改有关。如果路由器配置了静态IP地址和端口映射,并且目的IP地址是已知的静态公网IP地址,那么在通信过程中,目的IP地址也不会发生变化。当源设备和目的设备都在同一个局域网内时,它们之间直接通信,目的IP地址就是目的设备在局域网内的私有IP地址,不会经过NAT转换,因此目的IP地址保持不变。重启路由器后,DHCP(动态主机配置协议)会重新分配IP地址,尤其是在使用动态IP地址的情况下,公网IP地址可能会发生变化。

2024-11-27 20:14:15 862

原创 TCP与IP

假设MSS为1024字节,则TCP将这20字节的数据封装在一个TCP报文段中。目的主机收到IP数据报后,会先剥离IP头部,然后根据协议类型(TCP)将数据交给TCP协议栈。TCP和IP的分装过程可以理解为一个套娃,IP包像一个大盒子,包含TCP数据段这个小盒子,小盒子里面才是实际应用层的数据。IP数据报包含IP头部(包含源IP地址、目的IP地址、协议类型等)和TCP报文段。接收方收到IP数据报后,会依次剥离IP头部和TCP头部,最终将20字节的HTTP请求交给浏览器处理。IP数据报包含IP头部和数据部分。

2024-11-26 22:21:21 665

原创 任意两个特征向量线性相关

然而,存在一些特殊情况,两个线性相关的向量可能是来自不同特征值的特征子空间的基向量。只有当 A 是一个对角化的矩阵(可以对角化)时,线性相关的特征向量才一定对应相同的特征值。在非对角化的矩阵中,相同的特征值可以对应多个线性无关的特征向量,但线性相关的特征向量。设 A 是一个 n×n 矩阵,v₁ 和 v₂ 是 A 的特征向量,且 λ₁ 和 λ₂ 分别是它们对应的特征值。如果 v₁ 和 v₂ 是不同线性变换的特征向量,即使它们线性相关,它们的特征值也可能不同。对应相同的特征值,除非出现像零矩阵那样特殊的情况。

2024-11-26 18:24:27 816

原创 成组链表法

将目标组的空闲分区链表合并到其相邻组的空闲分区链表中。这可以通过遍历原组的空闲分区链表来实现,例如,可以将链表的前半部分移动到新组,后半部分保留在原组。如果系统中没有足够的空间来创建新的组,则需要考虑其他的内存管理策略,例如压缩内存或拒绝分配请求。当从一个组中释放空闲分区后,该组的空闲分区数量少于预设的最小值,并且该组存在相邻的组(当向一个组添加新的空闲分区后,该组的空闲分区数量超过预设的最大值(例如,每个索引表项对应一个特定大小的空闲分区组。从找到的组的空闲分区链表中移除第一个空闲分区,并返回其地址。

2024-11-26 07:26:23 937

原创 cache失效与硬件处理

缓存失效(Cache Miss)发生在处理器需要访问的数据不在缓存中时。这会导致处理器必须从主内存中检索数据,这是一个比从缓存读取数据慢得多的操作。如果没有找到(缓存失效,Cache Miss),则会触发一个读取内存的操作。这通常涉及到多级缓存(L1, L2, L3等等),处理器会先在速度最快的L1缓存中查找。从内存读取的数据会以缓存行的形式(通常是64字节或更大的块)写入缓存。如果发生缓存失效,处理器会向内存控制器发出请求,内存控制器则从主内存中读取包含所需数据的缓存行。这通常是一个相对耗时的过程。

2024-11-25 18:42:50 631

原创 魏尔斯特拉斯函数

这是魏尔斯特拉斯函数最令人惊奇的性质。在任何点上,函数图像的局部变化都过于剧烈,以至于无法定义一个确定的切线斜率。证明过程比较复杂,通常需要用到三角恒等式和级数的性质。魏尔斯特拉斯函数(Weierstrass function) 是一个处处连续但处处不可微的函数,它是一个经典的反例,颠覆了人们对连续性和可微性之间关系的直觉。在不同的尺度下,魏尔斯特拉斯函数的图像都表现出相似的特征。这是分形几何的重要特征。可以通过逐项求和证明其连续性。每个项都是连续的,并且级数在任何点上都一致收敛。

2024-11-24 21:49:03 1301

原创 初始归并段以及多路归并的路数

最佳归并树的目标是在给定多个初始归并段的情况下,找到一种最优的合并策略,以最小化总的I/O操作次数(即磁盘读写次数)。这与简单的多路归并不同,简单的多路归并只是将所有段同时合并,而最佳归并树会根据段的长度(或其他相关因素)来制定合并顺序,以达到最优效果。堆的每个元素都是一个 (值, 段号, 位置) 三元组,表示当前段中最小元素的值,所属段号以及在该段中的位置。对于需要稳定排序的情况,归并排序是不错的选择。根据待排序数据的总量和选择的内部排序算法的时间和空间复杂度,可以估计出一个合适的初始归并段大小。

2024-11-24 20:55:00 1166

原创 哈夫曼树以及其性质

对于权值集B,由于存在一个极大的权值 (100) 和多个极小的权值 (1),构建过程会更复杂,而且最终的哈夫曼树会呈现出高度不平衡的状态。通过为出现频率高的字符分配较短的编码,而为出现频率低的字符分配较长的编码,可以实现数据压缩。哈夫曼编码的核心思想是根据字符出现的频率构建哈夫曼树,然后为每个字符分配一个唯一的二进制编码。频率高的字符得到较短的编码,频率低的字符得到较长的编码,从而实现数据压缩。与完全二叉树或二叉查找树不同,哈夫曼树并不强调节点的排序或结构的平衡性,它的目标是优化带权路径长度。

2024-11-24 16:55:50 1204

原创 硬件多线程技术、粗粒度、细粒度

任务被分解成许多小的子任务。线程间的同步开销相对较大,因为线程频繁地进行同步和切换上下文,但可以实现更高的并行度,更好地利用多核处理器的资源。共享资源导致线程之间存在竞争,性能提升有限,且并非真正的并行,在某些应用场景下可能不会有明显的性能提升,甚至可能由于资源竞争导致性能下降。在多线程编程和并行计算中,“粗粒度”和“细粒度”指的是任务分解的粒度大小,也就是将一个大的任务分解成多个子任务时,每个子任务的规模。显著提升处理能力,性能提升明显,容易通过软件实现并行化,且不会出现由于资源竞争导致性能下降的问题。

2024-11-24 07:20:42 1844

原创 先行进位链

CLA 的硬件实现通常使用逻辑门(例如,与门、或门、异或门)来实现 G 和 P 信号的计算,以及进位的递归计算。分层 CLA 将输入数据分成多个组,每个组使用一个较小的 CLA 计算进位,然后更高层的 CLA 将这些组的进位组合起来。对于较小的位数,可以预先计算所有可能的进位组合,并将这些结果存储在查找表中。这可以简化逻辑电路,并提高速度,但查找表的规模会随着位数的增加而呈指数增长,因此只适用于较小的位数。对于非常长的位数,通常会采用分层结构的 CLA,或者与其他加法器技术结合使用,例如混合加法器。

2024-11-24 07:14:04 655

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除