缺失值检测和处理

检测:

  • 检测每个数据是否缺失。
df.isnull()
  • 统计的缺失值的数量。
df.isnull().sum()

删除:

  • 有缺失就删除
df.dropna()
  • 删除特定列缺失的行
    df4=df[~np.isnan(df['年龄'])]#过滤掉年龄为空的数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值