检测:
- 检测每个数据是否缺失。
df.isnull()
- 统计列的缺失值的数量。
df.isnull().sum()
删除:
- 有缺失就删除
df.dropna()
- 删除特定列缺失的行
df4=df[~np.isnan(df['年龄'])]#过滤掉年龄为空的数据
检测:
df.isnull()
df.isnull().sum()
删除:
df.dropna()
df4=df[~np.isnan(df['年龄'])]#过滤掉年龄为空的数据