vllm使用和推理流程

VLLM是一个大模型推理框架,提供高效、便捷的自然语言处理(NLP)模型部署方案。项目已在GitHub上开源,文档详细介绍了安装和使用流程,帮助开发者快速集成和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离线推理

python examples/offline_inference/basic/basic.py
# SPDX-License-Identifier: Apache-2.0

from vllm import LLM, SamplingParams

if __name__ == '__main__':
    # Sample prompts.
    prompts = [
	    "Hello, my name is"
### vLLM 推理机制概述 vLLM 是一种高效的大型语言模型推理框架,其核心在于通过分页注意力(PagedAttention)技术优化内存管理[^2]。该技术允许模型在有限的 GPU 显存条件下处理更大的上下文长度,从而显著提升性能。 以下是基于 vLLM 进行推理的一个典型流程: #### 配置环境 为了运行 vLLM 推理服务,需先安装必要的依赖项并配置环境变量。以下是一个简单的 Python 脚本示例用于加载 Qwen2 模型: ```python from vllm import LLM, SamplingParams # 初始化模型实例 model_path = "Qwen/qwen2" # 替换为您实际使用的模型路径 llm = LLM(model=model_path) # 设置采样参数 sampling_params = SamplingParams(temperature=0.8, top_p=0.95) ``` 上述代码片段初始化了一个 `LLM` 实例,并设置了温度 (`temperature`) 截断概率 (`top_p`) 参数以控制生成文本的质量多样性。 #### 发起推理请求 一旦模型被成功加载,可以通过传递输入提示 (prompt) 来发起具体的推理任务。下面展示了一种常见的交互方式: ```python prompts = ["解释一下什么是黑洞?"] outputs = llm.generate(prompts, sampling_params=sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt}\nGenerated Text: {generated_text}") ``` 这段脚本会向预训练好的 Qwen2 提供关于“黑洞”的问题作为输入,并返回相应的生成结果[^1]。 #### 解决常见问题 如果遇到诸如超时、显存不足等问题,则可以参考官方文档调整相关设置或者尝试增加硬件资源分配量。例如,在启动 API 服务之前可通过命令行指定最大批大小以及每批次的最大序列长度等选项来缓解压力[^3]: ```bash vllm-engine --model Qwen/qwen2 \ --max-batch-size 16 \ --max-sequence-length 2048 ``` 以上指令定义了每次最多可接受多少条并发请求(`--max-batch-size`) 及单个样本所能容纳的最大 token 数目(`--max-sequence-length`)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值