一 定义
凝聚聚类(Agglomerative Clustering)是一种自底向上的层次聚类算法,它通过逐步合并相似的样本或簇,最终形成一棵完整的聚类树(层次结构)。
二、算法流程
- 初始化:将每个样本视为一个独立的簇。
- 计算相似度:计算所有簇对之间的距离。
- 合并簇:合并距离最近的两个簇。
- 更新距离:重新计算新簇与其他簇的距离。
- 迭代:重复步骤 3 和 4,直到满足终止条件。
三、优缺点分析
优点 | 缺点 |
---|---|
无需预先指定簇数量 | 计算复杂度高(O (n³)) |
生成层次化聚类结果,适合多尺度分析 | 一旦合并无法撤销,可能导致错误合并 |
对距离度量方法灵活 | 对噪声和离群点敏感 |
适用于任意形状的簇(尤其是单链接) | 解释性依赖树状图的合理截断 |