聚类-凝聚聚类

一 定义       

 凝聚聚类(Agglomerative Clustering)是一种自底向上的层次聚类算法,它通过逐步合并相似的样本或簇,最终形成一棵完整的聚类树(层次结构)。

二、算法流程

  1. 初始化:将每个样本视为一个独立的簇。
  2. 计算相似度:计算所有簇对之间的距离。
  3. 合并簇:合并距离最近的两个簇。
  4. 更新距离:重新计算新簇与其他簇的距离。
  5. 迭代:重复步骤 3 和 4,直到满足终止条件。

三、优缺点分析

优点缺点
无需预先指定簇数量计算复杂度高(O (n³))
生成层次化聚类结果,适合多尺度分析一旦合并无法撤销,可能导致错误合并
对距离度量方法灵活对噪声和离群点敏感
适用于任意形状的簇(尤其是单链接)解释性依赖树状图的合理截断

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值