
程序漫谈
文章平均质量分 85
人工智能等热门领域运行;展望未来,探讨物联网、云计算下程序的创新方向与网络安全挑战。在这里,一起探索程序世界的无限可能,见证其如何持续重塑人类社会。
超龄超能程序猿
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
四十不惑:一个程序员的最后坚持・日常工作
七点十五分的闹钟响第三遍时,我正用左手拇指按着后颈的颈椎贴。薄荷味透过衬衫渗出来,和老花镜一起成了上班标配。手机屏亮着凌晨三点的运维告警 —— 闸机控制系统的位置分组模块又出了并发问题,实习生小王在群里发了三个哭脸表情。。原创 2025-07-31 15:30:19 · 419 阅读 · 0 评论 -
(2)当 AI 是徒弟:铁匠师傅的引导式干活法
AI时代的编程智慧:铁匠铺的启示 传统编程与AI协作就像铁匠铺里的师徒配合。老师傅(程序员)运用小锤(精准引导),通过轻敲调整参数、提供示例,来引导徒弟(AI模型)发力;而徒弟(AI)则发挥蛮力优势执行任务。二者的核心区别在于:传统方法强调精准控制每一步,而AI方法需要先让模型尝试,再针对性调整。编程智慧在于:1)精准引导而非蛮力控制;2)明确能力边界,不盲目接单;3)针对性修正而非推倒重来。这种"轻敲引导"的协作模式,比单纯依赖人力或AI都更高效。原创 2025-07-13 10:00:28 · 245 阅读 · 0 评论 -
(1)当代码遇上大模型:程序员如何从 “控制者” 变 “引导者”?
事情传统编程思维大模型思维看结果必须百分百对差不多就行,别太离谱接任务要么全干,要么不干能干的干,不能干的老实说改错误记下来就完了统计哪错得多,先改哪就像学做饭:传统思维是 “必须按菜谱放 3 克盐”,大模型思维是 “尝着咸淡差不多就行”—— 不用一开始就追求完美,先学会灵活调整,反而更容易上手。原创 2025-07-12 22:13:32 · 184 阅读 · 0 评论 -
漫谈常见模型:江湖雅号
卷积神经网络在图像江湖中被誉为 “拼图圣手”,它最擅长将复杂的图像拆解成无数细小的碎片,再凭借独特的章法重新拼凑出真相。当一张猫咪图片摆在面前,它不会囫囵吞枣地打量整体,而是先派出 “卷积核小卒”,有的专门捕捉猫咪的胡须线条,有的专注识别毛茸茸的耳朵轮廓,还有的负责探查明亮的眼睛区域。这些小卒各司其职,把图像分割成一个个局部特征,就像把拼图拆成小块。接着,“池化高手” 登场,将重复的碎片合并精简,保留最关键的信息。最后,经过层层传递与重组,原本杂乱的像素碎片在它手中变成清晰可辨的猫咪形象。原创 2025-07-12 14:02:03 · 1008 阅读 · 0 评论 -
漫谈常见机器学习算法:江湖诨号
本文用武侠江湖的比喻生动介绍了常见的机器学习算法。最近邻算法像"跟风侠"简单跟随多数意见;线性模型如"算账先生"精于数值计算;朴素贝叶斯是凭经验的"算命先生";决策树是爱问问题的"机灵鬼";随机森林则是集体决策的"江湖帮派";梯度提升决策树像追求完美的"学霸";支持向量机是精准"划界大师";神经网络则是深藏不露的"扫地僧"。每种算法都有其特点和适用场原创 2025-07-06 09:47:06 · 785 阅读 · 0 评论 -
从生活实例看:点积、内积和矩阵乘法如何玩转机器学习
本文通过生活化例子介绍了点积、内积和矩阵乘法在机器学习中的关键作用。点积衡量向量相似度,用于推荐系统和神经网络;内积是点积的扩展,在支持向量机和度量学习中发挥重要作用;矩阵乘法则是神经网络和降维算法的基础运算。三者在机器学习中密切配合,点积是矩阵乘法的基本单元,内积是其高级形式。理解这些数学工具的工作原理,有助于更好地应用机器学习解决实际问题。原创 2025-07-03 21:06:03 · 708 阅读 · 0 评论 -
30秒看懂卷积神经网络
卷积神经网络(CNN)是图像识别的核心技术,通过四大核心组件实现智能识别。卷积层像"特征侦探",用滑动窗口提取图像特征;池化层是"瘦身专家",压缩数据保留关键信息;全连接层作为"裁判团"汇总特征投票分类;激活函数赋予网络非线性处理能力。CNN广泛应用于人脸识别、自动驾驶和医疗诊断等领域,通过多层特征提取和分类决策,实现了从简单线条到复杂物体的精准识别。这一技术让机器真正"看懂"图像,成为现代AI应用的重要基础。原创 2025-07-01 11:59:58 · 320 阅读 · 0 评论