
YOLO学习流水账
文章平均质量分 92
YOLOv入门
YOLOv运用到项目
掌握YOLOv的全面起点。
高级技术,运用到的记录
超龄超能程序猿
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
(12)机器学习小白入门YOLOv:YOLOv8-cls 模型微调实操
YOLOv8-cls 模型微调实操。原创 2025-07-22 16:44:51 · 527 阅读 · 0 评论 -
(10)机器学习小白入门 YOLOv:YOLOv8-cls 模型评估实操
YOLOv8-cls 模型的评估围绕四大核心指标展开:Top-1 准确率与 Top-1 准确率分别衡量单标签场景下的精准度和多类别场景的容错能力,混淆矩阵直观呈现类别误判规律,损失曲线则用于判断模型是否过拟合或欠拟合。评估实操可分为三个关键步骤:首先按规范路径准备包含验证集与类别子文件夹的评估数据;其次通过调用 YOLO 模型的 train 接口完成训练,配置数据路径、轮数、图片尺寸等参数,并保存模型;最后加载模型执行 val 评估,获取量化指标与可视化结果(如混淆矩阵热力图、样本预测对比图等)。。原创 2025-07-21 20:02:19 · 667 阅读 · 0 评论 -
(11)机器学习小白入门YOLOv:YOLOv8-cls epochs与数据量的关系
epochs 与数据量的核心关系是 “让模型在有限数据中充分学习,同时避免过度记忆实际微调时,不应机械遵循 “10-50 轮” 的建议,而需根据数据量大小、类别复杂度及验证指标动态调整,通过早停策略和经验公式找到最佳平衡点。例如:500 张样本 + 简单类别 → 15-20 轮5000 张样本 + 中等复杂度 → 30-40 轮10000 张样本 + 高复杂度 → 40-50 轮(或按早停策略终止)。原创 2025-07-22 10:52:25 · 1038 阅读 · 0 评论 -
(9)机器学习小白入门 YOLOv:YOLOv8-cls 技术解析与代码实现
YOLOv8-cls 是 YOLOv8 系列中针对图像分类任务的模型,基于 CSPDarknet 架构优化,专注于高效特征提取与类别判断,支持多规模版本部署。原创 2025-07-21 12:03:54 · 498 阅读 · 0 评论 -
(8)机器学习小白入门 YOLO:无代码实现分类模型模型训练全流程
本地训练 YOLOv8 的分类模型(Yolo_Cls),按步骤实现实现分类模模型训练全流程。以下是完整的训练流程原创 2025-07-18 20:50:56 · 1016 阅读 · 0 评论 -
(7)机器学习小白入门 YOLOv:机器学习模型训练详解
模型通过一个称为反向传播的过程反复进行预测、计算误差和更新参数。在此过程中,模型会调整其内部参数 (weights and biases) 以减少误差。通过多次重复这一循环,模型逐渐提高了准确性。随着时间的推移,它就能学会识别形状、颜色和纹理等复杂模式。# 定义模型的训练配置参数config = {"epochs": 100, # 总共训练多少轮"imgsz": 640, # 图像缩放大小"batch_size": 16, # 每次送入网络的数据量(影响训练速度和内存占用)原创 2025-07-11 13:37:18 · 602 阅读 · 0 评论 -
(6)机器学习小白入门 YOLOv:图片的数据预处理
本文介绍了YOLO目标检测模型的数据预处理全流程。主要包括:1)YOLO数据集结构要求,包括标准文件夹格式、图片命名规范和标签文件格式;2)核心预处理技术,如图像标准化、像素归一化、标签标准化处理以及数据增强方法;3)使用LabelImg等工具生成标签的转换方法。文章还提供了完整的预处理流程图和步骤总结,帮助机器学习初学者掌握从原始数据到YOLO可训练数据集的完整转换过程,为后续模型训练奠定基础。原创 2025-07-10 13:33:37 · 817 阅读 · 0 评论 -
(5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
摘要: YOLO模型训练所需图像数量取决于任务复杂度(简单任务需数百张,复杂任务需上万张)和模型大小(小模型需数千张,大模型需数万张)。数据不足时可采取以下策略:1)合成虚拟数据;2)数据增强(翻转、旋转等);3)迁移学习(复用预训练模型);4)半监督学习(结合无标注数据)。实际应用需灵活选择方法,平衡数据量与模型性能。原创 2025-07-09 14:37:08 · 973 阅读 · 0 评论 -
(4)机器学习小白入门YOLOv :图片标注实操手册
对于熟悉 Python 和 YOLOv 的资深程序员而言,图片标注是模型训练前至关重要的环节,其质量直接影响模型的检测精度。以下是详细的标注过程、步骤及相关实例代码:一、标注前的准备工作。原创 2025-07-08 20:57:12 · 1505 阅读 · 0 评论 -
(3)机器学习小白入门 YOLOv: 解锁图片分类新技能
(1)机器学习小白入门YOLOv :从概念到实践(2)机器学习小白入门 YOLOv:从模块优化到工程部署YOLOv 算法通常被用于目标检测任务,但通过对其进行适当的调整和改造,也能够满足图片分类的需求。接下来,我将基于之前 YOLOv 的开发框架,详细介绍如何利用它实现图片分类。原创 2025-07-06 11:31:39 · 645 阅读 · 0 评论 -
(2)机器学习小白入门 YOLOv:从模块优化到工程部署
在完成《机器学习小白入门 YOLOv:从概念到实践》的学习后,我们已经掌握了 YOLOv 的基础概念、环境搭建及基础运行操作。本指南将聚焦于 YOLOv 在实际开发中的进阶内容,助力开发者深入理解和应用 YOLOv 进行目标检测项目开发。原创 2025-07-05 11:42:25 · 475 阅读 · 0 评论 -
(1)机器学习小白入门 YOLOv:从概念到实践
本文介绍了目标检测算法YOLOv的入门指南。YOLOv以"一步到位"的核心思想,通过单次网络预测实现快速高效的目标检测,广泛应用于安防、自动驾驶等领域。文章详细讲解了YOLOv的发展历程、环境搭建(包括硬件要求和Python/PyTorch安装)、预训练模型的使用方法,以及如何运行检测代码进行实时目标识别。此外,还解析了YOLOv的代码结构,并指导读者如何准备数据集、配置参数来训练自己的YOLOv模型。通过本文,初学者可以快速掌握YOLOv的基本原理和实践应用,为进一步学习目标检测技术奠原创 2025-07-05 09:52:30 · 1014 阅读 · 0 评论