卷积定理理解:如何将系数多项式乘法降到n*log n的复杂度?

目标

两个向量(每个向量各自对应一个多项式)的简单相乘(时间复杂度O(n2)O(n^2)O(n2))可以通过两个向量各自对应的离散傅里叶变换的相乘(时间复杂度O(n⋅lg n)O(n\cdot \text{lg }n)O(nlg n))来代替,以此降低计算的时间复杂度。

核心思路

点值表达式的乘法仅需O(n)O(n)O(n)复杂度,因此系数表达式的多项式乘法希望通过点值表达式来作为媒介来完成乘法操作,之后再将计算结果转化为系数表达式。

背景知识(可跳过)

次数界(关键概念)

多项式计算

多项式加法

多项式乘法

这里解释一下为什么CCC的次数界为na+nb−1n_a+n_b-1na+nb1?

AA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十有久诚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值