目标
两个向量(每个向量各自对应一个多项式)的简单相乘(时间复杂度O(n2)O(n^2)O(n2))可以通过两个向量各自对应的离散傅里叶变换的相乘(时间复杂度O(n⋅lg n)O(n\cdot \text{lg }n)O(n⋅lg n))来代替,以此降低计算的时间复杂度。
核心思路
点值表达式的乘法仅需O(n)O(n)O(n)复杂度,因此系数表达式的多项式乘法希望通过点值表达式来作为媒介来完成乘法操作,之后再将计算结果转化为系数表达式。
背景知识(可跳过)
次数界(关键概念)
多项式计算
多项式加法
多项式乘法
这里解释一下为什么CCC的次数界为na+nb−1n_a+n_b-1na+nb−1?
AA