力扣48.旋转图像

一、前言

力扣48.旋转图像

这道题要求把给定矩阵旋转90度,并且不允许使用额外矩阵来完成旋转图像。

于是这道题只能使用原地旋转的方法来解决


二、原地旋转

在这里插入图片描述

对于一个N=3的矩阵来说,只需要两次循环就可以完成了

  1. A1放到A3的位置,A3放到C3的位置,C3放到C1的位置,A1的位置放原C1的值
  2. A2放到B3的位置,B3放到C2的位置,C2放到B1的位置,A2的位置放原B1的值

也就是需要循环N - 1

[外链图片转存中...(img-rJjGlzzo-1734843619302)]

而对于一个N=4的,会出现两个环,每个环需要进行需要进行3次循环。

从此可以得出规律,对于每一个N × N的矩阵来说,都会有N / 2个环需要原地旋转,每个环需要循环N - 1 - i次,其中i为第几个环,因为环越往内,环的循环次数就越少。

int n = matrix.length;
int k = n / 2;
for (int i = 0; i < k; i++) {
    for (int j = i; j < n - i - 1; j++) {
		// 交换
    }
}

于是,本题的关键就是需要确定四个需要交换数值的坐标的表达式

  1. 左上:(i, j)
  2. 左下:(n - j -1, i),**n - j -1是因为在同一个环中,行是会变化的,而列却不会变化,永远是同一列,随着环的变化,列才会变化!**比如N=4,第一次左上为A1,左下为D1;第二次左上为A2,而左下为C1;因此可以看出行是会跟着j变化的,而列是跟着i变化的。
  3. 右上:(j, n - i -1),行是跟着j变化的,而列是跟着i变化的,比如N=4A1对应的是A4A2对应的是B4,其中列随着环变化而变化,而行随着j变化而变化。
  4. 右下:(n - i -1, n - j - 1),和前面分析差不多

推算出来四个需要交换的下标后,这道题就完成了百分之九十了

public void rotate(int[][] matrix) {
    int n = matrix.length;
    int k = n / 2;
    for (int i = 0; i < k; i++) {
        for (int j = i; j < n - i - 1; j++) {
            int t = matrix[i][j];
            matrix[i][j] = matrix[n - j - 1][i];
            matrix[n  - j - 1][i] = matrix[n  - i- 1][n - j - 1];
            matrix[n  - i - 1][n -  j - 1] = matrix[j][n - i - 1];
            matrix[j][n  - i - 1] = t;
        }
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

起名方面没有灵感

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值