关于Tensorflow 1.X和2.X匹配的相关问题综合记录

本文讲述了在NVIDIA 30系列显卡上遇到Tensorflow 1.X与CUDA 10.0的兼容问题,强调了更新到Tensorflow 2.X和对应CUDA版本的必要性。通过详细步骤,作者分享了如何检查GPU可用性、下载必需的DLL文件以解决GPU不被识别的问题,并提供了关于显卡选择的一些建议,尤其是关注CUDA核心数量和功耗对性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    首先大家要清楚一个大环境就是在未来我们肯定会更换新设备,tensorflow 1.X系列已经逐渐不适用了,目前大部分家用主流机器都使用的是NVIDIA GEFORCE(主攻家用游戏市场)的30系列显卡,而Tensorflow1.X系列所提供的服务止步于最高支持20系列显卡的CUDA 10.0 (大家可以把10.1看做过渡版本)

NVIDIA知识扫盲:NVIDIA知识扫盲:Geforce、Quadro、泰坦以及Tesla到底是什么鬼??应该怎么选? - 哔哩哔哩

附上对应表:

    这样会出现像我一样的到底如何配置tensorflow 2.X版本的一些问题,主要踩坑:下载了GPU版本却只有CPU在运行且满载,一开始我也尝试过在30系列显卡上安装并使用CUDA 10.0,但也只能是勉强跑C(而且层出不穷的小问题很多,多到头皮发麻,但奈何百度很强大),根本没有G 的身影……   

 

可以看到我NVIDIA的Control panel中显示我的显卡驱动版本(466.67)和显卡型号(3070 LP)目前自持CUDA 11.3 但仍会兼容11.0以上(在30

自编译tensorflow1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.支持mkl,无MPI; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]:/home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: hp@dla:~/work/ts_compile/tensorflow$ bazel build --config=opt --config=mkl --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
<think>好的,我现在需要帮用户设计一个关于PyTorchTensorFlow基础知识的教学计划,作为学习Transformer的第一步。用户之前已经询问过如何系统学习Transformer,现在他可能希望更详细地了解如何巩固PyTorchTensorFlow的基础,以便更好地理解后续内容。 首先,我需要考虑用户的基础。作为计算机系学生,可能已经接触过Python基本的机器学习概念,但可能对深度学习框架不够熟悉。因此,教学计划需要从最基础的张量操作开始,逐步深入。 接下来,用户提到要从巩固必备知识开始,特别是PyTorchTensorFlow。这两个框架是学习Transformer的关键工具,所以必须确保用户能熟练使用。需要比较两者的异同,帮助用户理解各自的优势,比如PyTorch的动态计算图TensorFlow的静态图,以及各自的生态系统。 然后,用户可能希望有实践任务来巩固知识。例如,从零实现线性回归简单的神经网络,这样可以加深对自动求导模型训练流程的理解。此外,用户可能需要调试技巧,比如如何检查张量形状,这在之前的回答中也提到过,需要再次强调。 还要考虑用户的学习节奏,分阶段进行,每周安排具体任务,确保不会过于密集。同时推荐资源,比如官方教程书籍,让用户有更多参考资料。可能还需要提醒用户注意常见错误,比如维度不匹配,以及如何利用社区资源解决问题。 最后,需要确保整个计划与后续的Transformer学习衔接顺畅,比如在掌握张量操作模型构建后,能够顺利进入Transformer的原理学习代码实现。因此,在基础阶段要打好坚实的基础,避免后续学习中出现障碍。以下</think>是从 **PyTorch/TensorFlow 基础**开始的详细教学计划,以掌握 Transformer 所需的工具基础,分 **4周**逐步推进,包含代码示例关键练习: --- ### **第一周:PyTorch/TensorFlow 核心操作** #### **目标**:掌握张量操作、自动求导、基础模型搭建 1. **张量基础**(2天) - **PyTorch**: ```python import torch # 创建张量 a = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32) # 显式指定类型 b = torch.randn(2, 2) # 随机初始化 # 运算:广播机制、矩阵乘法(注意区分 * @) c = a * b # 逐元素乘 d = a @ b.T # 矩阵乘法 # 维度操作:view/reshape, permute, squeeze/unsqueeze e = a.view(4) # 改变形状 f = a.permute(1, 0) # 转置 ``` - **TensorFlow**: ```python import tensorflow as tf a = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) b = tf.random.normal((2, 2)) c = tf.multiply(a, b) d = tf.matmul(a, tf.transpose(b)) # 动态形状 vs 静态形状 e = tf.reshape(a, (4,)) f = tf.transpose(a) ``` - **重点练习**: - 用广播机制实现两个不同形状张量的运算(如 `(3,1) + (1,3)`)。 - 理解 `torch.Size([2,2])` `tf.TensorShape([2,2])` 的区别。 2. **自动求导**(3天) - **PyTorch**: ```python x = torch.tensor(3.0, requires_grad=True) y = x**2 + 2*x y.backward() # 反向传播 print(x.grad) # dy/dx = 2x + 2 → 输出 8.0 ``` - **TensorFlow**: ```python x = tf.Variable(3.0) with tf.GradientTape() as tape: y = x**2 + 2*x dy_dx = tape.gradient(y, x) # 输出 8.0 ``` - **关键理解**: - PyTorch 的 `backward()` 会累积梯度,需手动 `zero_grad()`; - TensorFlow 的 `GradientTape` 默认只记录一次计算图。 3. **实战任务**(2天): - **从零实现线性回归**(不用高级API): - 生成数据:`y = 3x + 2 + 噪声`。 - 手动定义参数 `w` `b`,用梯度下降更新(PyTorch/TF 二选一)。 - **示例代码(PyTorch)**: ```python # 生成数据 X = torch.arange(0, 100, dtype=torch.float32).view(-1, 1) y = 3*X + 2 + torch.randn(X.shape)*0.1 # 初始化参数 w = torch.randn(1, requires_grad=True) b = torch.zeros(1, requires_grad=True) # 训练循环 for epoch in range(100): y_pred = w*X + b loss = torch.mean((y_pred - y)**2) loss.backward() with torch.no_grad(): w -= 0.001 * w.grad b -= 0.001 * b.grad w.grad.zero_() b.grad.zero_() ``` --- ### **第二周:神经网络基础与模型训练** #### **目标**:掌握全连接网络、损失函数、优化器、数据加载 1. **全连接网络搭建**(3天): - **PyTorch**(`nn.Module` 用法): ```python class MLP(torch.nn.Module): def __init__(self): super().__init__() self.layers = torch.nn.Sequential( torch.nn.Linear(784, 256), torch.nn.ReLU(), torch.nn.Linear(256, 10) ) def forward(self, x): return self.layers(x) ``` - **TensorFlow**(Keras API): ```python model = tf.keras.Sequential([ tf.keras.layers.Dense(256, activation='relu', input_shape=(784,)), tf.keras.layers.Dense(10) ]) ``` - **关键练习**: - 对比 `torch.nn.Linear` `tf.keras.layers.Dense` 的初始化方式差异。 - 手动实现一个激活函数(如 ReLU)的前向传播。 2. **训练流程实战**(4天): - **数据加载**: - PyTorch:`Dataset` `DataLoader`(自定义或使用 `torchvision.datasets`)。 - TensorFlow:`tf.data.Dataset`(支持并行加载预处理)。 - **损失函数与优化器**: ```python # PyTorch criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # TensorFlow loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) ``` - **训练循环**(PyTorch 示例): ```python for epoch in range(10): for X_batch, y_batch in train_loader: optimizer.zero_grad() outputs = model(X_batch) loss = criterion(outputs, y_batch) loss.backward() optimizer.step() ``` --- ### **第三周:调试技巧与性能优化** #### **目标**:解决维度错误、监控训练、提升代码效率 1. **调试技巧**(2天): - **打印张量形状**:在每个网络层的 `forward` 函数中插入 `print(x.shape)`。 - **常见错误**: - 输入未展平(如 28x28 图像需转为 784 维)。 - 损失函数与输出不匹配(如 CrossEntropyLoss 要求 logits,无需 Softmax)。 - **工具推荐**: - PyTorch:`torchsummary` 库可视化模型结构。 - TensorFlow:`model.summary()` 直接输出参数统计。 2. **性能优化**(3天): - **GPU 加速**: - PyTorch:`.to('cuda')` 或 `torch.cuda.is_available()` 检查设备。 - TensorFlow:自动检测 GPU,可通过 `tf.config.list_physical_devices('GPU')` 确认。 - **混合精度训练**(以 PyTorch 为例): ```python scaler = torch.cuda.amp.GradScaler() for input, target in data: with torch.cuda.amp.autocast(): output = model(input) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` --- ### **第四周:综合实战与衔接 Transformer** #### **目标**:通过项目串联知识,过渡到 Transformer 学习 1. **综合项目**(4天): - **任务**:用全连接网络实现 MNIST 分类(准确率 >97%)。 - **要求**: - 使用自定义 DataLoader 加载数据。 - 实现学习率衰减(如 `torch.optim.lr_scheduler.StepLR`)。 - 记录训练损失验证准确率(可用 TensorBoard 或 Matplotlib)。 2. **衔接 Transformer**(3天): - **预热练习**: - 用 `nn.MultiheadAttention`(PyTorch)或 `tf.keras.layers.MultiHeadAttention` 实现一个简单的自注意力模块。 - 理解 `batch_first` 参数对输入形状的影响(如 `(seq_len, batch, dim)` vs `(batch, seq_len, dim)`)。 - **推荐代码**: ```python # PyTorch 自注意力示例 attn = torch.nn.MultiheadAttention(embed_dim=64, num_heads=8) query = torch.randn(10, 32, 64) # (seq_len, batch, dim) output, attn_weights = attn(query, query, query) ``` --- ### **关键学习资源** - **PyTorch**: - 官方教程:[《60分钟闪电战》](https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html) - 书籍:《PyTorch 深度学习实战》(Eli Stevens 著) - **TensorFlow**: - 官方指南:[《TensorFlow Core》](https://www.tensorflow.org/guide/core) - 实战课程:[Coursera《TensorFlow in Practice》](https://www.coursera.org/specializations/tensorflow-in-practice) --- ### **教师提醒** 1. **不要跳过调试**:遇到维度错误时,画出数据流图(如 `输入 → 层1 → 层2 → 输出` 的形状变化)。 2. **理解设备迁移**:确保模型张量在同一设备上(CPU/GPU),否则会报错。 3. **从简单开始**:先在小数据集(如 MNIST)上跑通全流程,再挑战复杂任务。 按此计划,4周后可扎实掌握 PyTorch/TensorFlow 核心技能,顺利进入 Transformer 的模型实现阶段!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值