有序二维矩阵中的目标值查找
1. 题目描述
给定一个元素为非负整数的二维数组matrix
,其中:
- 每一行按照从左到右递增的顺序排列
- 每一列按照从上到下递增的顺序排列
再给定一个非负整数aim
,请判断aim
是否存在于matrix
中。
示例:
int[][] matrix = {
{1, 4, 7, 11},
{2, 5, 8, 12},
{3, 6, 9, 16},
{10, 13, 14, 17}
};
int aim = 5; // 返回true
int aim = 15; // 返回false
2. 问题解释
- 矩阵行列均有序,但不像完全排序的一维数组那样可以直接二分
- 需要利用行列有序的特性设计高效查找算法
- 暴力搜索时间复杂度为O(m*n),不够高效
- 目标是设计优于O(m*n)的算法
3. 解决思路
方法一:逐行二分查找(适合行数较少的情况)
- 对每一行进行二分查找
- 时间复杂度:O(m log n),m为行数,n为列数
方法二:利用行列有序特性(最优解)
- 从矩阵的右上角开始查找(或左下角)
- 比较当前元素与目标值:
- 如果等于目标值,返回true
- 如果大于目标值,排除当前列(向左移动)
- 如果小于目标值,排除当前行(向下移动)
- 时间复杂度:O(m + n)
4. 代码实现
public class SearchInSortedMatrix {
// 方法一:逐行二分查找
public boolean searchMatrixByRowBinarySearch(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
for (int[] row : matrix) {
if (binarySearch(row, target)) {
return true;
}
}
return false;
}
private boolean binarySearch(int[] row, int target) {
int left = 0, right = row.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (row[mid] == target) {
return true;
} else if (row[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return false;
}
// 方法二:利用行列有序特性(最优解)
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = 0;
int col = matrix[0].length - 1; // 从右上角开始
while (row < matrix.length && col >= 0) {
if (matrix[row][col] == target) {
return true;
} else if (matrix[row][col] > target) {
col--; // 排除当前列
} else {
row++; // 排除当前行
}
}
return false;
}
public static void main(String[] args) {
SearchInSortedMatrix solution = new SearchInSortedMatrix();
int[][] matrix = {
{1, 4, 7, 11},
{2, 5, 8, 12},
{3, 6, 9, 16},
{10, 13, 14, 17}
};
System.out.println(solution.searchMatrix(matrix, 5)); // true
System.out.println(solution.searchMatrix(matrix, 15)); // false
System.out.println(solution.searchMatrixByRowBinarySearch(matrix, 9)); // true
System.out.println(solution.searchMatrixByRowBinarySearch(matrix, 20)); // false
}
}
5. 总结
-
方法选择:
- 当行数远小于列数时,方法一(逐行二分)可能更优
- 一般情况下,方法二(行列排除法)是最优解
-
复杂度分析:
- 方法一:O(m log n)
- 方法二:O(m + n)
-
关键点:
- 利用矩阵行列有序的特性
- 选择合适的起点(右上角或左下角)
- 每次比较都能排除一行或一列
-
扩展思考:
- 如果矩阵是完全排序的(即展平后有序),可以直接使用一维二分查找
- 如果矩阵中存在重复元素,算法依然适用
-
实际应用:
- 数据库索引查找
- 图像处理中的像素查找
- 游戏地图中的坐标查找