D. Exact Change
E. Replace the Numbers
G. Subsequences Galore
因为1和2的数量最大值不是很多,多了的话可以用3代替,那么枚举1和2的数量然后二分3的数量
int a[110], n;
bitset<10> bit;
bool ch(int x)
{
for(int i = 1;i <= n;i ++)
{
int num = a[i];
x*3 >= a[i] ? num %= 3 : num -= x*3;
while(~num && num < 10 && num <= a[i]) if(bit[num])num = -1;else num += 3;
if(num != -1) return 0;
}
return 1;
}
int main()
{
int t;
scanf("%d", &t);
while(t --)
{
scanf("%d", &n);
for(int i = 1;i <= n;i ++)
scanf("%d", a+i);
int ans = 0x3f3f3f3f;
for(int i = 0;i <= 2;i ++)
for(int j = 0;j <= 3;j ++)
{
bit.reset();
bit[0] = 1;
for(int i = 1;i <= j;i ++) bit |= bit<<2;
for(int j = 1;j <= i;j ++) bit |= bit<<1;
int l = 0, r = (1e9+2)/3+10000;
while(l < r)
ch(mid) ? r = mid : l = mid+1;
ans = min(ans, i + j + l);
}
cout<<ans<<endl;
}
return 0;
}
代码有注释,不过也不咋好,主要并查集 + ( x = num[id[x]] ) 这操作我整懵了
int id[N], fa[N], num[N], idx = 0; // id[] 是x在num数组的哪个位置
// num[] 是最后答案的数组,其中用并查集来整合
int find(int u){return fa[u] == u ? u : fa[u] = find(fa[u]);}
int main()
{
int t;
scanf("%d", &t);
for(int i = 1;i <= t;i ++) fa[i] = i;
while(t --)
{
int f, x, y;
scanf("%d%d", &f, &x);
if(f == 1){
num[++idx] = x; // 加一个数
if(id[x])fa[id[x]] = idx; // 把是x的父亲设为新加的这个数的位置。
id[x] = idx; // x 在 idx;
}
else{
scanf("%d", &y);
if(x == y)continue;
if(!id[y])num[id[x]] = y, id[y] = id[x]; // y不存在 -> 把x变成y;
else fa[id[x]] = id[y]; // y存在 -> 把x指向y;
id[x] = 0; // 消除x存在的痕迹。
}
}
for(int i = 1;i <= idx;i ++)
printf("%d ", num[find(i)]);
return 0;
}
首先我们可以枚举2n子集, 那么一个集合的求法可以用容斥来算,容斥之后就是子集的和了,子集的和网上说sos dp,推荐博客 主要这个博客那张图好好,代码实现也有点复杂,可能我写麻烦了吧。
const int N = 2e6+10, mod = 998244353;
void mull(int &a, LL b){a = a*b%mod;return ;}
void add(int &a, LL b){a = (a+b)%mod;return ;}
int a[23][26], dp[1<<23];
char s[N];
int main()
{
int n;
scanf("%d", &n);
for(int i = 0;i < n;i ++)
{
scanf("%s", s);
for(int j = 0;s[j];j ++)
a[i][s[j]-'a'] ++;
}
dp[0] = 1;
for(int i = 1;i < 1<<n;i ++) // 预处理
{
int num[26], s = 1, k = 0;
for(int j = 0;j < 26;j ++)
num[j] = N;
for(int j = 0;j < n;j ++)
if(i>>j&1)
{
k ++;
for(int k = 0;k < 26;k ++)
if(num[k] > a[j][k])
num[k] = a[j][k];
}
for(int i = 0;i < 26;i ++) mull(s, num[i]+1);
s --;
dp[i] = k&1 ? s : -s;
}
for(int i = 0;i < n;i ++)
for(int j = 0;j < 1<<n;j ++)
if(j>>i&1)
add(dp[j], dp[j^1<<i]);
LL ans = 0;
for(int j = 0;j < 1<<n;j ++)
{
int k, sum;
k = sum = 0;
for(int i = 0;i < n;i ++) if(j>>i&1) k++, sum += i+1;
add(dp[j], mod); // 因为dp[] 在上面可能是负的 -> 第45行.
ans ^= (LL)k*sum*dp[j];
}
cout<<ans<<endl;
return 0;
}