Educational Codeforces Round 119 (Rated for Div. 2)

本文介绍了三种不同的算法问题解决思路:通过枚举与二分法优化数值替换问题;使用并查集处理元素替换与追踪;以及利用SOS DP算法进行字符串子集的计数与求和。每种方法都附带了详细的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Exact Change
E. Replace the Numbers
G. Subsequences Galore


因为1和2的数量最大值不是很多,多了的话可以用3代替,那么枚举1和2的数量然后二分3的数量

int a[110], n;
bitset<10> bit;
bool ch(int x)
{
	for(int i = 1;i <= n;i ++)
	{
		int num = a[i];
		x*3 >= a[i] ? num %= 3 : num -= x*3;
		while(~num && num < 10 && num <= a[i]) if(bit[num])num = -1;else num += 3;
		if(num != -1) return 0;
	}
	return 1;
}

int main() 
{	
	int t;
	scanf("%d", &t);
	while(t --)
	{
		scanf("%d", &n);
		for(int i = 1;i <= n;i ++)
			scanf("%d", a+i);
		int ans = 0x3f3f3f3f;
		for(int i = 0;i <= 2;i ++)
			for(int j = 0;j <= 3;j ++)
			{
				bit.reset();
				bit[0] = 1;
				for(int i = 1;i <= j;i ++) bit |= bit<<2;
				for(int j = 1;j <= i;j ++) bit |= bit<<1;  
				int l = 0, r = (1e9+2)/3+10000;
				while(l < r)
					ch(mid) ? r = mid : l = mid+1;
				ans = min(ans, i + j + l);
			}
		cout<<ans<<endl;
	}
	return 0;
}

代码有注释,不过也不咋好,主要并查集 + ( x = num[id[x]] ) 这操作我整懵了

int id[N], fa[N], num[N], idx = 0;  // id[]  是x在num数组的哪个位置 
                                    // num[] 是最后答案的数组,其中用并查集来整合 
int find(int u){return fa[u] == u ? u : fa[u] = find(fa[u]);}

int main() 
{	
	int t;
	scanf("%d", &t);
	for(int i = 1;i <= t;i ++) fa[i] = i;
	while(t --)
	{
		int f, x, y;
		scanf("%d%d", &f, &x);
		if(f == 1){                   
			num[++idx] = x;           // 加一个数 
			if(id[x])fa[id[x]] = idx; // 把是x的父亲设为新加的这个数的位置。 
			id[x] = idx;              // x 在 idx; 
		}
		else{
			scanf("%d", &y);
			if(x == y)continue;     
			if(!id[y])num[id[x]] = y, id[y] = id[x]; // y不存在 -> 把x变成y; 
			else fa[id[x]] = id[y];                  // y存在   -> 把x指向y; 
			id[x] = 0;                               // 消除x存在的痕迹。 
		}
	}
	for(int i = 1;i <= idx;i ++)
		printf("%d ", num[find(i)]);
	return 0;
}

首先我们可以枚举2n子集, 那么一个集合的求法可以用容斥来算,容斥之后就是子集的和了,子集的和网上说sos dp,推荐博客 主要这个博客那张图好好,代码实现也有点复杂,可能我写麻烦了吧。

const int N = 2e6+10, mod = 998244353;
void mull(int &a, LL b){a = a*b%mod;return ;}
void add(int &a, LL b){a = (a+b)%mod;return ;}

int a[23][26], dp[1<<23];
char s[N];
int main() 
{	
	int n;
	scanf("%d", &n);
	for(int i = 0;i < n;i ++)
	{
		scanf("%s", s);
		for(int j = 0;s[j];j ++)
			a[i][s[j]-'a'] ++;
	}
	dp[0] = 1;
	for(int i = 1;i < 1<<n;i ++) // 预处理  
	{
		int num[26], s = 1, k = 0;
		for(int j = 0;j < 26;j ++)
			num[j] = N;
		for(int j = 0;j < n;j ++)
			if(i>>j&1)
			{
				k ++;
				for(int k = 0;k < 26;k ++)
					if(num[k] > a[j][k])
						num[k] = a[j][k];
			}
		for(int i = 0;i < 26;i ++) mull(s, num[i]+1);
		s --;
		dp[i] = k&1 ? s : -s;
	}
	for(int i = 0;i < n;i ++)
		for(int j = 0;j < 1<<n;j ++)
			if(j>>i&1) 
			add(dp[j], dp[j^1<<i]);
			
	LL ans = 0;
	for(int j = 0;j < 1<<n;j ++)
	{
		int k, sum;
		k = sum = 0;
		for(int i = 0;i < n;i ++) if(j>>i&1) k++, sum += i+1;
		add(dp[j], mod); // 因为dp[] 在上面可能是负的 -> 第45行. 
		ans ^= (LL)k*sum*dp[j];
	}
	cout<<ans<<endl;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李昌荣。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值