刘老师的《Pytorch深度学习实践》第二讲:线性模型 作业代码

这篇博客展示了如何利用numpy和matplotlib库在三维空间中绘制损失函数的表面图。通过定义前向传播和损失函数,计算损失并进行可视化,帮助理解参数对损失的影响。代码中使用了网格搜索的方法,遍历权重和偏置的取值范围,计算总损失并展示结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x_data=[1.0,2.0,3.0]
y_data=[5.0,8.0,11.0]

def forward(x):
    return x*w+b

def loss(x,y):
    y_pred=forward(x)
    return(y_pred-y)*(y_pred-y)

mse_list=[]
W=np.arange(0.0,4.1,0.1)
B=np.arange(0.0,4.1,0.1)
[w,b]=np.meshgrid(W,B)

l_sum=0
for x_val,y_val in zip(x_data,y_data):
    y_pred_val=forward(x_val)
    print(y_pred_val)
    loss_val=loss(x_val,y_val)
    l_sum+=loss_val

fig=plt.figure()
ax=Axes3D(fig)
ax.plot_surface(w,b,l_sum/3)
plt.show()

 仅留用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值