面向动漫风格的图像开源生成模型速览:nai-anime-v2

一、研究背景与目标

NovelAI 团队于 2023 年 10 月 21 日发布了面向动漫风格的图像生成模型 NovelAI Diffusion Anime V2(简称 NAID V2)。该模型是对既有 V1 版本的直接升级,仍以 Stable Diffusion 为底层框架,但通过新的训练方法与数据策略,在风格一致性、细节表现、美学质量与可控性方面实现全面提升。

二、训练方法更新

NAID V2 依托英伟达 H100 计算集群重新审视并改进了训练流程,具体措施包括:

  1. 分辨率提升
    训练分辨率由 512×768 提升至 1024×1024,使得默认无需 SMEA 采样即可直接生成分辨率为 832×1216 或 1216×832 的竖图与横图。
    对 Opus 订阅用户,免费生成的最大分辨率同步开放至 1024×1024。

  2. 领域知识强化
    通过更大规模、更高质量的动漫领域数据,模型对提示词(prompt)标签的遵循能力显著增强。

三、Undesired Content Strength 机制

新模型引入“Undesired Content Strength”(UC Strength)参数,用于独立调节负向提示词(Undesired Content)的权重:

  • 默认值 100% 表示 UC 不额外生效;

  • 低于 100% 时,UC 作用被削弱,0% 近似于将 UC 留空;

  • 高于 100% 时,UC 权重高于正向提示词,进一步抑制指定内容。

该功能需额外算力,生成速度略降并增加 Anlas 代币消耗。

四、提示词体系重构

4.1 质量标签(Quality Tags)

旧版“masterpiece”标签因易引入画框等副作用被移除,新版质量标签按优劣顺序如下:

best quality → amazing quality → great quality → normal quality → bad quality → worst quality

4.2 美学标签(Aesthetics Tags)

团队自建美学评分数据集,新增四级美学标签:

very aesthetic → aesthetic → displeasing → very displeasing

建议与质量标签组合使用,通常“best quality + very aesthetic”即可取得高美学结果。

4.3 年份标签(Year Tags)

通过“year 2022”“year 2014”等标签,可直接控制输出图像的艺术年代风格。

五、新旧模型对比示例

作者在相同随机种子与近似提示词下生成对比图,展示 V2 相对 V1 在以下方面的提升:

  • 线条清晰度

  • 色彩饱和与过渡

  • 角色面部与服饰细节

  • 背景构图合理性

(原文提供示例图,此处略)

六、后续计划与社区活动

团队已基于 V2 经验启动 V3 训练,并报告“早期结果非常可期”。同时,官方于 2023 年 10 月 20 日至 31 日举办万圣节主题图像生成比赛,奖池合计 65,000 Anlas。


核心技术汇总表

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Open-source-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值