介绍下304过程

本文详细介绍了HTTP缓存机制中的304状态码及其应用场景。从浏览器请求资源时的Expires和Cache-Control强缓存策略,到ETag和Last-Modify的协商缓存策略,解析了如何通过HTTP头部信息控制缓存更新,减少网络传输,提升页面加载速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍下304过程

a. 浏览器请求资源时首先命中资源的ExpiresCache-Control,Expires 受限于本地时间,如果修改了本地时间,可能会造成缓存失效,可以通过Cache-control: max-age指定最大生命周期,状态仍然返回200,但不会请求数据,在浏览器中能明显看到from cache字样。

b. 强缓存失效,进入协商缓存阶段,首先验证ETagETag可以保证每一个资源是唯一的,资源变化都会导致ETag变化。服务器根据客户端上送的If-None-Match值来判断是否命中缓存。

c. 协商缓存Last-Modify/If-Modify-Since阶段,客户端第一次请求资源时,服务服返回的header中会加上Last-Modify,Last-modify是一个时间标识该资源的最后修改时间。再次请求该资源时,request的请求头中会包含If-Modify-Since,该值为缓存之前返回的Last-Modify。服务器收到If-Modify-Since后,根据资源的最后修改时间判断是否命中缓存。

在这里插入图片描述

### YOLOv11 介绍与特性 YOLOv11 是 YOLO 系列目标检测模型中的一个重要版本,其设计目标是在保持实时性能的同时进一步提升检测精度。该模型继承了 YOLO 系列一贯的高效性和简洁性,并引入了一些新的改进以增强模型性能。 #### 模型结构与特性 YOLOv11 的主要特点包括以下几个方面: 1. **更深的特征提取器** YOLOv11 在特征提取阶段采用了更深的网络结构,增强了对复杂场景中目标的表达能力[^1]。通过增加网络深度,模型能够学习到更加丰富的特征表示,从而提高检测精度。 2. **残差结构与注意力机制** 类似于 YOLOv6,YOLOv11 引入了残差连接和注意力机制来优化特征提取过程。残差结构有助于缓解深层网络中的梯度消失问题,而注意力机制则可以突出关键区域,抑制无关信息,从而提升模型对目标的感知能力[^1]。 3. **数据增强方法** YOLOv11 使用了多种先进的数据增强技术,例如 Mosaic、CutMix 和 MixUp 等。这些方法通过混合多张图像或裁剪图像块来生成更具多样性的训练样本,从而显著提高了模型的泛化能力[^1]。 4. **优化算法** 为了加速模型收敛并提高训练效率,YOLOv11 采用了多种优化算法,如随机梯度下降(SGD)和余弦退火(CosineAnnealing)等。这些优化策略能够在保证模型性能的同时减少训练时间[^1]。 5. **热力图可视化与上下文感知** YOLOv11 的热力图可视化结果显示,该模型在目标激活区域的表现更为清晰和精确。这得益于其引入的区域注意力机制,该机制通过扩大感受野捕捉整体上下文信息,从而提升了前景激活的精度[^2]。 #### 性能优势 YOLOv11 的改进不仅体现在模型结构上,还反映在其实际应用中的表现。相比之前的版本,YOLOv11 在检测精度和速度之间取得了更好的平衡,特别适合需要高精度和实时性的工业应用场景[^1]。 ```python # 示例代码:YOLOv11 数据增强实现 import torch from torchvision import transforms def apply_mosaic(image_list): mosaic_image = torch.zeros((3, 608, 608)) # 假设输入为 608x608 for i, image in enumerate(image_list): x_start = (i % 2) * 304 y_start = (i // 2) * 304 mosaic_image[:, y_start:y_start+304, x_start:x_start+304] = image[:, :304, :304] return mosaic_image # 调用示例 images = [transforms.ToTensor()(img) for img in image_list] mosaic_output = apply_mosaic(images) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值