【论文笔记】--目标检测算法在交通场景中应用综述

本文综述了目标检测算法在交通场景的应用,包括非机动车、机动车和行人的识别挑战。深度学习方法相较于传统算法提高了检测效果,但仍存在小目标识别难题。在机动车识别中,特征增强、上下文信息融合、锚点框设计和NMS优化是关键。三维目标检测和多模态融合提高应用性,但成本和技术要求较高。未来研究趋势涉及特征提取、多模态融合、弱监督和模型可解释性提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测算法在交通场景中应用综述

摘要

  总结目标检测算法发展与研究现状,one-step与two-step优缺点对比,以车、人、非机动车为目标,从传统检测方法、目标检测算法、目标检测算法优化、三维目标检测、多模态目标检测、重识别六个方面分别论述和总结。
  交通场景是目标检测领域热点,传统方法复杂、精度低,深度学习方法发展。目标检测分为基于候选区域(two-step)和基于回归(one-step)两类。前者通过子网络辅助生成候选边界框,后者直接在特征图上生成候选边界框。
在这里插入图片描述
在这里插入图片描述
  基于候选区域的算法检测速度普遍较慢,在交通场景中检测的实时性还不能满足,但检测精度在不断提升;基于回归的算法检测速度快、实时性较好,但是检测精度与准确度相对于两阶段的算法还是较差。

目标检测算法在交通场景中的应用

非机动车识别

  真实场景的应用需求,识别面临的困难、干扰,需要研究的问题。传统算法典型列举,鲁棒性差,窗口冗余,真实场景中特征难以提取,难以满足需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值