基本概念
互感系数M
同名端
定义:两线圈的电流从均同名端流入,每一线圈的自感磁场和互感磁场是相互加强的,M取正;反之,为异名段,M取负。
耦合系数
电磁耦合系数是指两个电感器之间的电磁耦合程度,是指电感的磁场线线圈一个回路时,另一个回路电通生成的比例。电磁耦合系数可以用下面的公式来计算:
k=ML1L2k = \frac{M}{\sqrt{L_1L_2}}k=L1L2M
其中,MMM是电感器的互感系数,L1L_1L1和L2L_2L2分别为两个电感器的自感系数。
电磁耦合系数越大,表示两个电感器的耦合效应越强,其相互作用程度越大:
- K=1,全耦合
- K=0,无耦合
- K接近1,紧耦合
- K远小于1,松耦合
根据电压表指针判断电感线圈同名端
结论
耦合电感元件的去耦等效电路
串联
a)顺接:L=L1+L2+2ML=L_1+L_2+2ML=L1+L2+2M
a)反接:L=L1+L2−2ML=L_1+L_2-2ML=L1+L2−2M
并联
a)同名端相连:L=L1L2−M2L1+L2−2ML= \frac{L_1L_2-M^2}{L_1+L_2-2M}L=L1+L2−2ML1L2−M2
b)同名端不相连:L=L1L2−M2L1+L2+2ML= \frac{L_1L_2-M^2}{L_1+L_2+2M}L=L1+L2+2ML1L2−M2
有一个公共连接点的两绕组耦合电感元件
注意去耦等效电路的支路电流、端口电压与原电路的支路电流、端口电压之间的对应关系
尤其是有一个公共连接点的两绕组耦合电感元件的等效。
多绕组耦合电感混联
于是端口等效电感值
L=ψi=5/9L= \frac{ψ}{i}=5/9L=iψ=5/9
变压器
空心变压器
反射阻抗
全耦合变压器
耦合系数k=ML1L2k = \frac{M}{\sqrt{L_1L_2}}k=L1L2M
全耦合K=1;故M=L1L2M=\sqrt{L_1L_2}M=L1L2
特性方程
变比n=N1N2=L1L2n=\frac{N_1}{N_2}= \sqrt{\frac{L_1}{L_2}}n=N2N1=L2L1
理想变压器
若使L1、L2L_1、L_2L1、L2趋于∞,全耦合变压器变为理想变压器
- 理想变压器特性方程中的端电压、支路电流与频率无关
- 变压器的工作原理是电磁感应定律,因此特性方程只适用于时变的电压、电流,直流不适用;
- 理想变压器不消耗,不存储能量u1i1+u2i2=0u_1i_1+u_2i_2=0u1i1+u2i2=0,是一种无损耗无记忆的非储能元件;
- 表征理想变压器唯一参数是匝数比n=N1N2n=\frac{N_1}{N_2}n=N2N1
- 阻抗变换的性质,阻抗的折算
理想变压器电路的计算
注意理想变压器特性方程的符号
当电压的参考方向和同名端对应一致时,即同名端都是高电位或地电位,电压方程不出现负号,反之,有负号
当原副方绕组电流都是同时流入或同时流出同名端时,电流方程有负号,反之没有负号
注意变比
理想变压器的分析方法
回路电流分析
设定回路电流的参考方向,和变压器端电压参考方向;
写出变压器的特性方程
写出回路的KVL方程
解方程
去耦
根据特性方程,用受控源替代变压器
折算到原方绕组或折算到副方绕组
耦合变压器的去耦
将耦合变压器低电位段连接起来,
变成
有一个公共连接点的两绕组耦合电感元件
去耦