- 博客(2)
- 收藏
- 关注
原创 学习率调度器
(2)稳定训练过程:随着训练的进行,模型可能会接近最优解,此时较小的学习率有助于更精细地调整参数,提高模型的收敛性。(1) 动态学习率调整:学习率决定了参数在每次迭代中的更新幅度,对训练的收敛速度和模型性能至关重要。综合来说,学习率调度器提供了更灵活、动态的学习率调整机制,有助于优化器更好地适应不同的训练阶段和数据分布,提高深度学习模型的性能和稳定性。中来回波动,难以收敛。通过使用学习率调度器,可以在训练过程中逐渐减小学习率,避免震荡,并帮助模型更好地泛化到未见过的数据。:过大的学习率可能导致模型参数在。
2024-07-11 21:38:05
287
1
原创 loss和metric的区别
loss:在model.train()的模式下,每一个batch的样本都会有一个loss值,一个batch的loss是整个批次样本loss的均值,算一次用optimizer根据loss优化一次网络的参数,直到最优。loss的结果是动态的每一个样本的loss的均值,而metrics却是在此batch结束后,对这个batch的数据做评价的结果。metric:使整个模型用train_dataset训练完之后,开启model.eval()模式,测试一下这个模型的性能。optimizer:实现了参数的反向传播。
2024-07-11 14:36:50
335
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人