利用Python语言编写和调试一个识别手写数字\文字图像的深度前馈网络

利用Python语言编写和调试一个识别手写数字\文字图像的深度前馈网络,包括数据预处理、网络模型构建、模型参数初始化和正向推理、反向梯度下降参数寻优,以及实现模型预测的功能。

这是一个很经典的,也是机器学习里面基础的内容,这个内容的实现,可以帮助我们更加深刻的理解机机器学习,学会基础的深度网络模型的建立,训练和推理过程,理解深度学习,让自己创作出更好的模型。

1.首先需要的库内容,需要提前装好,包括:torch, matplotlib, seaborn.

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import seaborn as sns

2. 做数据预处理:

# 定义数据预处理的转换操作
transform = transforms.Compose([
    transforms.ToTensor(),  # 将图像数据转换为张量
    transforms.Normalize((0.1307,), (0.3081,))  # 标准化,MNIST数据集的均值和标准差
])

3.网络模型构建,包括下载并加载数据集和训练集, 获取单张图片,还有展示图片。

# 下载并加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值