利用Python语言编写和调试一个识别手写数字\文字图像的深度前馈网络,包括数据预处理、网络模型构建、模型参数初始化和正向推理、反向梯度下降参数寻优,以及实现模型预测的功能。
这是一个很经典的,也是机器学习里面基础的内容,这个内容的实现,可以帮助我们更加深刻的理解机机器学习,学会基础的深度网络模型的建立,训练和推理过程,理解深度学习,让自己创作出更好的模型。
1.首先需要的库内容,需要提前装好,包括:torch, matplotlib, seaborn.
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import seaborn as sns
2. 做数据预处理:
# 定义数据预处理的转换操作
transform = transforms.Compose([
transforms.ToTensor(), # 将图像数据转换为张量
transforms.Normalize((0.1307,), (0.3081,)) # 标准化,MNIST数据集的均值和标准差
])
3.网络模型构建,包括下载并加载数据集和训练集, 获取单张图片,还有展示图片。
# 下载并加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)