算法通关村——轻松搞定最大(小)深度问题

本文介绍了如何使用递归方法解决二叉树的最大深度和最小深度问题。最大深度是找到从根到最远叶子节点的最长路径,而最小深度是从根到最近叶子节点的最短路径。作者提供了相应的Java代码示例和终止条件分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 最大深度问题

点我跳转喔

给定一个二叉树 root ,返回其最大深度。

说明:最大深度为根节点到最远叶子结点的最长路径上的节点数。叶子节点是指灭有子节点的节点
在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:3

判断逻辑:
在这里插入图片描述
故核心判断逻辑代码为:

int leftHeight = getDepth(node.left);//左
int rightHeight = getDepth(node.right);//右
int depth = 1 + max(leftHeight , rightHeight);//中

实现代码为:

 public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftDepth = maxDepth(root.left);
        int rightDepth = maxDepth(root.right);
        return Math.max(leftDepth, rightDepth) + 1;
    }

2. 最小深度问题

点我跳转喔

给定一个二叉树,找出其最小深度。

说明:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。叶子节点是指没有子节点的节点。

在这里插入图片描述

输入:root = [1,null,2,4,3,7]
输出:2

注意点:
在这里插入图片描述

最小深度是从根节点到最近叶子节点的最短路径上的节点数,也就是最小深度的一层必须要有叶子节点,因为不能直接用。

终止条件:

  • 如果左子树为空,右子树不为空,说明最小深度是 1+ 右子树的深度。
  • 反之,右子树为空,左子树不为空,最小深度是 1 + 左子树的深度。

代码实现如下:

  public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        if (root.left == null && root.right == null) {
            return 1;
        }
        //确保在遍历二叉树的过程中,如果没有子节点的情况下,能够正确返回最小深度的值
        int min_depth = Integer.MAX_VALUE;
        if (root.left != null) {
            min_depth = Math.min(minDepth(root.left), min_depth);
        }
        if (root.right != null) {
            min_depth = Math.min(minDepth(root.right), min_depth);
        }
        return min_depth + 1;
    }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值