文章目录
1.二叉树深度优先遍历解题思路
1.1.三种深度优先遍历的方式
- 理解深度优先遍历的前提:
任何一颗非空的二叉树,都有根结点,左子树和右子树。例如上面这颗二叉树,根结点是A,左子树的结点有B、C、D,右子树的结点有E、F。而任意一颗非空的二叉树的左子树和右子树也是一颗二叉树。
上面这颗二叉树的根为B,左子树有C结点,右子树有D结点。 以B为根结点的左子树还是一颗二叉树。
上面这颗二叉树的根结点是C,左子树和右子树是null。
- 先序遍历(先根遍历)
先序遍历指的是,对于任意一颗二叉树,都先遍历其根结点,然后遍历其左子树,最后遍历其右子树。
例如上面这颗二叉树,先序遍历的结果就是A-B-C-D-E-F;
//先序遍历
public void preOrderTraversal(TreeNode root) {
if (root == null) return;
//对当前结点的实际工作 也可替换为其他语句
System.out.print(root.val + " ");
//实际工作结束
this.preOrderTraversal(root.left);
this.preOrderTraversal(root.right);
}
- 中序遍历(中根遍历)
中序遍历指的是,对于任意一颗二叉树,都先遍历其左子树,然后遍历其根节点,最后遍历其右子树。
例如上面这颗二叉树,中序遍历的结果就是C-B-D-A-E-F;
//中序遍历
public void inOrderTraversal(T