环境搭建
系统环境
需要Nvidia显卡,至少8G显存,且专用显存与共享显存之和大于20G
建议将非安装版的环境文件都放到非系统盘,方便重装或移植
以Windows11为例,非安装环境文件都放在 E 盘下
设置自定义Path文件夹
创建 E:\mypath
文件夹,将其添加进用户环境变量Path
中,之后会用
CMake
下载 CMake 的 Windows x64 ZIP 对应文件:Download CMake
解压到E:\environment\cmake
将E:\environment\cmake\bin
添加到用户环境变量Path
中
C++编译
下载 Community 版 Visual Studio
:Visual Studio 2022 IDE
运行后选择桌面c++板块内容安装,若中途取消安装了,可以在开始菜单下栏的新增项目(或推荐项目)中找到该安装程序
这里只需要c++的编译环境,把除了C++板块以外的安装项目全部取消勾选(该板块自动勾选系统SDK等其他相关组件,不要取消勾选)
python环境
python安装
下载新版Anaconda安装程序:Download Anaconda
安装过程中将添加到环境变量等选项全部打勾
用uv管理pip包
将uv所有文件装至 E:\uv
下
安装
添加 python 3.11
独立文件
uv python install 3.11
uv python list # 查看是否安装成功
Git环境
安装Git:Git - 安装 Git (git-scm.com)
Nvidia CUDA 工具包
安装12.1版:CUDA Toolkit 12.1 Update 1 Downloads | NVIDIA Developer
注意运行安装程序后在安装选单界面只安装CUDA驱动和工具包,不选其他显卡驱动和Nsignt
安装完后重启电脑
输入指令查看信息
nvidia-smi # 看当前驱动最大可支持的CUDA版本
nvcc -V # 看当前安装的CUDA运行时版本
部署训练框架
部署LLaMA-Factory
拉取源码
在 E:\AI
文件夹下拉取 LLaMA-Factory.git
,注意挂代理加速
git config --global http.https://github.com.proxy socks5://127.0.0.1:1080 # 对github设置socks5代理
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd