- 博客(10)
- 收藏
- 关注
原创 AI新晋学徒#6:万数皆可问的ChatBI
今年陆续接到来自不同行业的企业客户就AI应用这一块的新需求,归结下来本质类似,都是希望就企业已有数据(结构化数据为主),通过自然语言提问,希望AI可以就提问结合数据来用自然语言直接回答(而不是像现在这样通过一些统计图表去展现);我自己做了一些搜索学习,原来这类需求的实现有一个专业名称,叫ChatBI.以下是一些学习笔记记录,一来方便自己需要时复习回看,二来也供有需要者参考;欢迎任何指正与交流。
2025-04-27 11:11:52
847
原创 实战LLM应用(4)基于本地知识库的RAG优化参数测试
**方向**:推动多模态模型向“原生多模态”发展,整合文本、图像、音频、视频等数据,建立统一的多模态词元序列空间,提升模型对复杂信息的理解与生成能力。当前人工智能的发展聚焦于**多模态融合、智能体扩展、具身交互、语言模型强化、新型架构探索、工程化落地**,以及**长期的类脑与量子技术突破**。同时,探索自博弈强化学习等方法增强模型的逻辑与稳定性。- **多模态词元融合**:整合文本、图像、音频、视频等数据,建立统一的词元序列空间(如OpenAI的GPT-4o模型),提升模型对复杂信息的理解和生成能力。
2025-04-08 21:17:30
881
原创 实战LLM应用(3):一个基本的RAG系统(LangChain+Python)
一个基本的RAG系统主要包含两个模块:索引模块(Indexing)、检索和生成模块(Retrieval and generation)。
2025-03-28 19:57:56
911
原创 实战LLM应用(2):搭建LangChain开发环境
至此,本地langchain架构调用本地部署LLM流程跑通,建议后续每次开发工作在虚拟环境进行。
2025-03-21 11:13:15
1150
原创 AI新晋学徒#3:LLM到底是什么
它在研究和学术界非常受欢迎。大语言模型,译自英文Large Language Model (LLM),是一种特殊的神经网络模型(深度学习模型),它通过学习大量的文本数据来掌握语言的规律和模式,打个不一定贴切的比方,就像让一个呱呱落地的婴儿经过不断地学习最终既掌握了语言的应用、也学会了经语言表达记录下来的知识。技术的跃式发展让身处其中的我们难免激动不已,在那之后,如何让技术真正造福身处其中的你我他们也委实路长且艰,我辈,努力吧。在谈及AI言必称大模型的当下,我们说大模型,更多时候在说的是大语言模型。
2024-12-13 10:33:26
1673
原创 AI新晋学徒#2:一些最基本的概念
近几年人工智能的再次“爆发”很大程度上与互联网上数据的海量涌现不无关系,因数据而爆的人工智能反过来说也更好的服务于数据,那么,数据到底是什么?这张图来自维基百科,不一定是最新最全面的,但是在我看来非常清晰的将AI领域最根本的、也比较容易让人困惑的几个基本概念之间的关系呈现了出来。简单来说,数据无非结构化和非结构化两大类,我们每天接触的无数的文字、图片、视频等等都是非此即彼的数据而已。当模型建立以后,可以怎么“教”机器呢?如此,经过了反复学习的机器,就可以称之为有”智能“了,也即我们现在大家都说的人工智能。
2024-12-12 14:10:38
235
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人