一、项目背景与实现效果(后面附整体实现代码)


本爬虫项目通过逆向分析目标平台API接口,成功实现了以下核心功能:
- 全自动获取全球主流足球赛事数据
- 多维度采集9类赔率指标(包括胜平负、让球、大小球等)
- 美式赔率智能转换欧洲标准
- 支持批量处理与异常恢复机制
- 结构化存储赛事数据(CSV格式)
二、技术亮点解析
2.1 反爬策略突破
headers = {
"x-api-key": "CmX2KcMrXuFmNg6YFbmTxE0",
"User-Agent": "Mozilla/5.0(...) Safari/537.36" # 模拟浏览器指纹
}
- 动态密钥认证机制破解
- 浏览器指纹模拟技术
-
请求频率控制(0.5秒间隔,我爬完8000多条数据大概花了8个小时)
2.2 智能数据解析架构
def process_market_data(odds_data, market_type, side=None):
# 三层嵌套结构解析
for market in odds_data:
if market.get('type') == market_type:
for price_info in market.get('prices', []):
designation = price_info.get('designation')
# 多维度数据提取逻辑...
2.3 赔率转换算法
def american_to_decimal(american_odds):
if american_odds > 0:
return round((american_odds/100) + 1, 2)
else:
return round((100/abs(american_odds)) + 1, 2)
三、数据维度说明
采集字段 | 数据类型 | 示例 |
基础信息 | 比赛ID/联赛/时间 | 1602464902,英超,2023-08-20 |
胜平负赔率 | 美式/欧洲转换 | -110 → 1.91 |
让球盘口 | 让分数/对应赔率 | -1.5@1.85 |
大小球 | 盘口分界线 | 2.5大/小 |
球队特征数据 | 主客队独立统计 | 主队进球>1.5@1.75 |
四、工程化实践技巧
4.1 分批次存储
if len(batch_data) >= 100:
save_to_csv(batch_data, batch_number)
4.2 异常处理机制
try:
response = requests.get(...)
except Exception as e:
print(f"错误处理逻辑...")
4.3 数据校验机制
if market_type == 'team_total' and market.get('side') != side:
continue # 精准定位特征数据
五、完整代码(主要部分)
(注:已对关键信息脱敏,需自行配置环境变量)
import os
import hashlib
import time
from concurrent.futures import ThreadPoolExecutor
from config import API_CONFIG, DB_CONFIG
class SecureAPIClient:
def __init__(self):
self.session = requests.Session()
self.session.headers.update(self._gen_headers())
def _gen_headers(self):
"""动态生成请求头"""
return {
"x-api-key": os.getenv('API_KEY'),
"x-request-sign": self._generate_signature(),
"User-Agent": random.choice(USER_AGENTS)
}
def _generate_signature(self):
# 签名生成算法[已脱敏]
pass
class FootballDataCrawler:
# 完整类实现[已脱敏]
# 包含异常重试、数据校验等2000+行代码
if __name__ == '__main__':
crawler = FootballDataCrawler(
api_client=SecureAPIClient(),
storage_backend=MySQLStorage(DB_CONFIG)
)
crawler.run()
请在实际使用时注意:
- 遵守目标网站的robots.txt协议
- 控制请求频率避免服务器压力
- 合法合规使用采集数据
有爬虫数据需求或项目的可私信我,可以帮忙爬取。