阿里云PAI训练llama模型
在大模型训练的过程中,会用到高昂的设备,涉及到复杂的配置,伴随着很大的成本。阿里云PAI平台提供了一站式的AI开发全链路服务,提供从数据标注(PAI-iTAG)到模型开发(Designer)到模型训练(DLC / 灵骏)到模型部署(EAS)到模型运维(资产管控)的完整闭环,对学习Ai的萌新非常友好,可以在这里以比较低的价格租到强力的显卡,比如NVIDIA A10。Llama Factory是一个开源的低代码微调框架,他们两者结合在一起,不需要昂贵的设备,仅需要普通的笔记本电脑就可以在云端开启大模型训练。
阿里云免费试用 - 阿里云,获取交互式建模PAI DSW免费的使用权益
创建好工作空间后,可以在Notebook Gallery选择需要的案例
LLaMA Factory:微调LLaMA3模型实现角色扮演
进入创建的实例
进入到llama factory的notebook里面,依次按顺序安装所需要的依赖
然后下载数据集,这是训练模型的原材料
(数据集就像是一坨整理好的 “数据表格”,里面装的是 同一类主题的所有相关信息,而且这些信息是按照规则排列好的,方便查看和使用。比如,一个班级的学生名单,里面每行记录一个学生的姓名、年龄、成绩,每列对应 “姓名”“年龄”“成绩” 这些具体信息,这就是一个数据集
数据集包括:训练集、测试集、验证集 ,
训练集:训练模型 使用预先设定的超参数,训练常规参数,相当于课本和练习题
测试集:验证整个模型常规参数和超参数实现的整体效果。相当于期末考试卷
验证集:验证超参数是否是合适的,如何不合适,调整超参数,重新使用训练集再次训练,反复迭代比较,获取到基本的模型。相当于模拟考卷)
接下来就可以处理Web UI界面了
设置好参数
在lora参数设置中,这里可以看到所以的参数设置,如果想通过代码运行微调,可以直接复制这段命令直接在命令行中运行
然后可以开始训练,大约用了20分钟
接下来检验成果,选择刚刚训练好的模型
选择evalate评估模型,
评估好的结果会保存在这个目录中
接下来开始模型的评估,大约用了5分钟
BLEU(Bilingual Evaluation Understudy)指标常用于评估机器翻译、文本生成等任务中生成文本与参考文本的相似度,BLEU - 4 关注的是生成文本与参考文本之间 4 - gram(连续 4 个词)的匹配程度。这个得分 13.68 属于较低水平,这表明这个模型生成的文本在 4 - gram 层面与参考文本的匹配度较差。
现在实测一下实现训练效果
现在来对比一下原始模型的效果,卸载加载好的模型,把刚刚选择适配器的路径删掉,再重新加载
可以看到原始的模型无法模拟诸葛亮的语气