2024.10最新:CUDA安装,pytorch库安装

目录

一、CUDA安装

1.查看自己电脑适配的CUDA的最高版本

2.安装CUDA

3.检查环境变量是否配置,安装是否成功

二、pytorch库安装

1.pytorch库下载

2.选择合适的版本

3.查看版本


一、CUDA安装

1.查看自己电脑适配的CUDA的最高版本

  • 在命令提示符里输入nvidia-smi
  • 表格右上角显示的CUDA版本是该电脑适配的最高版本
  • 一般下载比该版本低一点的版本,因为会更稳定

2.安装CUDA

CUDA下载地址:

CUDA Toolkit Archive | NVIDIA Developer

  • 自选版本下载,我下载的是11.8.0版本的

  • 选择windows,x86,win10,一般选择local本地下载
  • 推荐使用迅雷下载,浏览器下载很慢

  • 选择默认路径即可

  • 正在安装

  • 自动检查系统兼容性

  • 选择自定义安装

  • 第一次安装全选

  • 使用默认位置即可,放c盘就行,尽量不要放d,e盘

  • 下一步,直到安装完成

3.检查环境变量是否配置,安装是否成功

  • 可以在命令提示符输入set cuda 来查看环境变量是否配置

  • 也可以在系统变量里查看有无上面的路径

  • 最后在命令提示符输入nvcc -V 或者 nvcc --version查看安装好的CUDA版本及其信息

二、pytorch库安装

1.pytorch库下载

pytorch官网:

PyTorch

  • 复制下方红框里的网址

  • 进入网页之后下滑找到torch,点击进入

2.选择合适的版本

  • 按ctrl+f搜索网页内容,
  • 找到符合条件的torch版本进行安装
    • cp表示python解释器的版本,需要与自己所用的解释器版本一致
    • cu表示CUDA版本,可以比自己下载的CUDA版本低
    • torch选择1.0的版本,不要选择2.0及以后的版本

3.查看版本

  • 安装好了之后在命令提示符里输入pip list 即可查看python解释器安装的所有的第三方库
  • 出现该行即安装成功
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃什么芹菜卷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值