手把手一步一步教你跑深度学习模型,Ubuntu22.04复现算法RandLa-net, 数据集使用S3DIS

本文详细介绍了如何在新环境中迁移并运行三维点云语义分割框架RandLA-Net,包括从Python3.5和TensorFlow1.11迁移到Python3.6和TensorFlow2.6,以及在CUDA11.4和S3DIS数据集上的应用,涉及环境配置、代码编译和模型训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

RandLA-Net目前应该是三维点云语义分割领域的一篇新的主流框架,在大场景三维点云语义分割算法RandLA-net中,原论文代码的环境是python3.5+tensorflow1.11+cuda9,而cuda9是不能在显卡RTX3080上跑通的,所以我的复现环境:python3.6+tensorflow-gpu2.6+cuda11.4+cudnn
博主亲测过,不过cuda和cudnn安装的版本要和ubuntu版本对应🙉。

1.下载代码

git clone --depth=1 https://github.com/luckyluckydadada/randla-net-tf2.git
在这里插入图片描述

2.创建环境

conda create -n randlanet python=3.6
在这里插入图片描述

3.进入环境

conda activate randlanet
在这里插入图片描述
tensorflow根据服务器版本安装对应的cuda和cudnn,注意cuda安装在服务器上跟cudnn,虚拟环境安装可能存在一定的问题,建议装服务器外面。一般问题就出现在环境上面,多花点功夫。

4.安装需要支持

注意路径进入randla-net-tf2文件夹,这里是安装一些工具。【打开helper_requirements.txt可看】

pip install -r helper_requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --timeout=120
如果下载速度可以的话,不需要使用镜像源

5.注意路径进入randla-net-tf2文件夹下,再运行:

sh compile_op.sh
进行编译相关函数

6.数据集介绍和下载:

大场景室内点云标注数据集S3DIS介绍
点云数据集
下载后数据集存放位置:家目录/data/S3DIS下。

ls ~/data/S3DIS/Stanford3dDataset_v1.2_Aligned_Version

同上皆是环境内,randla-net-tf2文件夹下运行:

7.运行代码生成需要文件

python utils/data_prepare_s3dis.py # 通过Stanford3dDataset_v1.2_Aligned_Version 生成input_0.040和original_ply

python utils/data_prepare_s3dis.py

这是经过栅格采样处理后的点云中间格式文件

8.训练 area2~5 :

python -B main_S3DIS.py --gpu 0 --mode train --test_area 1

python -B main_S3DIS.py --gpu 0 --mode train --test_area 1

9.预测area1

python -B main_S3DIS.py --gpu 0 --mode test --test_area 1

python -B main_S3DIS.py --gpu 0 --mode test --test_area 1

然后进行6倍交叉验证,将生成的val_preds文件放到data下自创的result文件中
在这里插入图片描述
放到如下result:
在这里插入图片描述
然后执行指令:python utils/6_fold_cv.py

python utils/6_fold_cv.py

10.可视化操作:

python vis_S3DIS.py #在vis_S3DIS.py文件里2处把家目录后面的用户名文件目录改成自己的🙉

python vis_S3DIS.py

原始图片

预测后的图片

RandLA-Net是一种基于点云数据的深度学习模型,用于点云分割和场景理解。下面是使用PyTorch实现RandLA-Net的简单步骤: 1. 安装依赖库 在Python环境中安装以下库: - PyTorch - NumPy - Open3D - Scikit-learn 其中PyTorch是必须的,其余库是为了可视化和数据预处理。 2. 下载数据集 下载点云数据集,例如S3DIS数据集,该数据集包含了用于建筑物场景的点云数据。可以从官方网站下载数据集。 3. 数据预处理 使用Open3D库读取点云数据并进行预处理。具体来说,可以使用Open3D库将点云数据转换为numpy数组,然后将其分为小的块,以便在GPU上进行训练。 ```python import open3d as o3d import numpy as np import os def load_data(path): pcd = o3d.io.read_point_cloud(path) points = np.asarray(pcd.points) return points def process_data(points, block_size=3.0, stride=1.5): blocks = [] for x in range(0, points.shape[0], stride): for y in range(0, points.shape[1], stride): for z in range(0, points.shape[2], stride): block = points[x:x+block_size, y:y+block_size, z:z+block_size] if block.shape[0] == block_size and block.shape[1] == block_size and block.shape[2] == block_size: blocks.append(block) return np.asarray(blocks) # Example usage points = load_data("data/room1.pcd") blocks = process_data(points) ``` 这将生成大小为3x3x3的块,每个块之间的距离为1.5。 4. 构建模型 RandLA-Net是一个基于点云的分割模型,它使用了局部注意力机制和多层感知器(MLP)。这里给出一个简单的RandLA-Net模型的实现: ```python import torch import torch.nn as nn class RandLANet(nn.Module): def __init__(self, input_channels, num_classes): super(RandLANet, self).__init__() # TODO: Define the model architecture self.conv1 = nn.Conv1d(input_channels, 32, 1) self.conv2 = nn.Conv1d(32, 64, 1) self.conv3 = nn.Conv1d(64, 128, 1) self.conv4 = nn.Conv1d(128, 256, 1) self.conv5 = nn.Conv1d(256, 512, 1) self.mlp1 = nn.Sequential( nn.Linear(512, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, 128), nn.BatchNorm1d(128), nn.ReLU(), nn.Linear(128, num_classes), nn.BatchNorm1d(num_classes) ) def forward(self, x): # TODO: Implement the forward pass x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) x = torch.max(x, dim=-1)[0] x = self.mlp1(x) return x ``` 这个模型定义了5个卷积层和一个多层感知器(MLP)。在前向传递过程中,点云数据被送入卷积层,然后通过局部最大池化层进行处理。最后,通过MLP将数据转换为预测的类别。 5. 训练模型 在准备好数据和模型之后,可以使用PyTorch的内置函数训练模型。这里使用交叉熵损失函数和Adam优化器: ```python import torch.optim as optim device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # TODO: Initialize the model model = RandLANet(input_channels=3, num_classes=13).to(device) # TODO: Initialize the optimizer and the loss function optimizer = optim.Adam(model.parameters(), lr=0.001) loss_fn = nn.CrossEntropyLoss() # TODO: Train the model for epoch in range(num_epochs): running_loss = 0.0 for i, batch in enumerate(train_loader): # Move the batch to the GPU batch = batch.to(device) # Zero the gradients optimizer.zero_grad() # Forward pass outputs = model(batch) loss = loss_fn(outputs, batch.labels) # Backward pass and optimization loss.backward() optimizer.step() # Record the loss running_loss += loss.item() # Print the epoch and the loss print('Epoch [%d], Loss: %.4f' % (epoch+1, running_loss / len(train_loader))) ``` 这里使用Adam优化器和交叉熵损失函数进行训练。训练完成后,可以使用预测函数对新数据进行分类: ```python def predict(model, data): with torch.no_grad(): # Move the data to the GPU data = data.to(device) # Make predictions outputs = model(data) _, predicted = torch.max(outputs.data, 1) # Move the predictions back to CPU predicted = predicted.cpu().numpy() return predicted # Example usage data = load_data("data/room2.pcd") data = process_data(data) data = torch.from_numpy(data).float().permute(0, 2, 1) predicted = predict(model, data) ``` 这将返回点云数据的分类预测。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值