布凯彻-劳斯基
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python 分词解析+词云可视化(含停用词文件)
【代码】Python 分词解析+词云可视化。原创 2024-11-22 11:44:14 · 291 阅读 · 0 评论 -
2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略 完整参考论文(2)
而狗的数量则存在一定的波动,尤其在2020年到2022年间有所下降,可能与疫情期间人们对养狗的需求和条件变化有关,总宠物数量总体呈现稳定增长。为了对过去五年中国宠物行业按宠物类型的发展情况进行深入的分析,不仅对宠物数量进行了观察,还研究了多个经济与人口相关的影响因素。人均GDP总体呈上升趋势,这与宠物市场规模的增长保持一致,说明收入水平的提高促进了人们对宠物的消费能力。猫数量和总宠物数量 与 GDP、城镇人口 呈显著正相关,说明随着人均收入和城镇化的增长,猫的数量和宠物总数都会增加。原创 2024-11-22 11:28:27 · 1066 阅读 · 0 评论 -
2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略 完整参考论文(1)
近年来,中国宠物食品行业迅速增长,但面临复杂的国际形势和多变的市场环境,因此科学地分析和预测该行业的发展趋势至关重要。本研究通过构建多个机器学习与统计回归模型,量化分析中国宠物食品行业的关键驱动因素,预测未来宠物食品总产值和出口值。在数据处理部分,收集了2019年至2023年中国宠物食品行业的相关数据,包括宠物数量、市场规模、人口增长率、人均GDP、汇率等多项指标。为确保数据的可比性与模型的有效性,进行了数据标准化、特征选择及特征工程,构建了完整的分析数据集。对于问题一。原创 2024-11-22 11:14:24 · 960 阅读 · 0 评论 -
2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略(详细解题思路)
根据收集到的全球市场需求数据,分析宠物食品在全球不同区域的增长趋势,例如欧洲、美 国等主要市场的宠物食品需求量。首先对收集到的指标进行分类,按类别进行分析。在当下, 日益发展的时代,宠物的数量应该均为稳步上升,在美国出现了下降的趋势, 中国 2019-2020 年也下降,这部分变化可能与疫情相关。建 立以宠物市场规模或宠物数量为因变量的回归模型,将之前选出的特征作为自变量,分析它 们对宠物市场的影响。预测未来三年全球对宠物食品的需求,依旧可以沿用问题一的时间序列预测、灰色模型 预测、多元回归预测。原创 2024-11-22 10:53:56 · 699 阅读 · 0 评论 -
2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 完整参考论文
特别是在耕地资源有限的乡村地区,合理规划农作物种植,能够提高农业生产效率,增强乡村经济的活力。irrigated_land = df_land[df_land['地块类型'] == '水浇地']['地块名称'].tolist() greenhouse_land = df_land[df_land['地块类型'] == '普通大棚']['地块名称'].tolist() smart_greenhouse_land = df_land[df_land['地块类型'] == '智慧大棚']['地块名称。原创 2024-09-07 13:32:59 · 1462 阅读 · 0 评论 -
2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略(可视化代码)
根据这个要求,我们可以得出是跨年进行规划的,所以我们要在附件中是要进行一起规划的,根据 result1_1 中的需要填的数据类型可以得出我们的决策变量是三维变量,但实际在求解的过程中,我们会将其转化为二维变量,即我们所求的年份是连续变化的。由于不同产物的销售量都会发生可正可负的变化,因此我们将这种变化作为一个固定的指标引入到目标函数中,比如题目中第一句话所描述的小麦和玉米会增长 5~10%之间,因此我们取其区间即变化了 5%的绝对值,再比如食用菌下降 1~5%,我们取其变化的区间,4%的绝对值。原创 2024-09-07 08:19:50 · 834 阅读 · 0 评论 -
2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 参考论文
持续更新中,2024年数学建模比赛思路代码论文都会发布到专栏内,只需订阅一次!完整论文+代码+数据结果链接在文末!第一问问题重述这个问题围绕的是华北山区的某乡村,在有限的耕地条件下,如何制定最优的农作物种植策略。乡村有 34 块露天耕地和 20 个大棚,种植条件包括粮食作物、蔬菜、水稻和食用菌。除了要考虑地块的面积、种植季节等,还要确保三年内每块地至少种植一次豆类作物。根据附件数据与网络搜集数据,建立规划模型,根据约束条件解题数据挖掘根据附件一二整理信息如下:关键信息数据地块34 个。原创 2024-09-07 07:58:40 · 573 阅读 · 0 评论 -
2023高教社数学建模国赛C题 - 蔬菜类商品的自动定价与补货决策(完整参考论文)
箱型图包含一个箱子其中,箱子的上下端分别表示数据集的上下四分位数,中线表示中位数,箱子的长度代表数据的分布区间,离群点则代表数据中的异常值。我们建议采集的数据包括:库存数据、竞争对手的价格数据、客户反馈、销售促销和广告活动的数据、季节性和趋势数据、供应链数据、宏观经济数据、商品的损耗数据、客户购买行为数据等。我们建议采集的数据包括:库存数据、竞争对手的价格数据、客户反馈、销售促销和广告活动的数据、季节性和趋势数据、供应链数据、宏观经济数据、商品的损耗数据、客户购买行为数据等。原创 2023-09-09 22:03:45 · 4407 阅读 · 0 评论 -
2023高教社数学建模国赛C题 - 蔬菜类商品的自动定价与补货决策(完整代码)
商超在现代经济中扮演着重要角色,但在蔬菜商品管理方面面临多重挑战。这些挑战包括准确预测销售趋势、合理制定价格策略和有效制定补货计划等。解决这些问题对商超至关重要,因为它们直接影响销售收益、库存成本和客户满意度。因此,本研究旨在为商超提供一套全面的蔬菜商品管理策略,以帮助它们更好地应对这些挑战。这些策略包括数据分析、市场调研、供应链优化和定价策略等。通过综合运用这些策略,商超能够更准确地预测市场需求、优化库存、制定合理的价格策略,并提高客户满意度。原创 2023-09-09 17:50:01 · 1231 阅读 · 0 评论 -
2023高教社数学建模国赛C题 - 蔬菜类商品的自动定价与补货决策(完整代码更新)
【代码】2023高教社数学建模国赛C题 - 蔬菜类商品的自动定价与补货决策(完整代码更新)原创 2023-09-09 17:25:35 · 3177 阅读 · 0 评论 -
2023高教社数学建模国赛C题 - 蔬菜类商品的自动定价与补货决策【思路分析(2)】
这是模型准备,接下来是寻优补货量,来使得收益最大化,预测的销量就是这几天的总需求,当补货量小于该需求量时,补货多少销量就多少,这后面的寻优模型中,用预测的销量/(1-损耗率〕作为补货量的最大值,寻优各个菜品的补货量,然后调出前面的模型,第二问就用筛选出来相关性大的菜品指标构建的模型来计算出该菜品的价格,这样就得到各个菜品的价格,然后算利润,用一种优化算法寻优,最后输出最优方案。相关性的方法很多,大家也不必去纠结后面问寻优的结果不同,第一问相关性的结果就决定了后面问的需求场景,逻辑没错就行。原创 2023-09-08 19:26:37 · 1153 阅读 · 1 评论 -
2023高教社数学建模国赛C题 - 蔬菜类商品的自动定价与补货决策【思路分析(1)+代码】
问题蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。问题考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成 定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略,使得商超收益最大。问题因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划,要求可 售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。原创 2023-09-08 19:21:40 · 3438 阅读 · 1 评论 -
2023高教社数学建模国赛C题 - 蔬菜类商品的自动定价与补货决策(完整参考论文)
摘要商超(超市和零售店)在现代经济中扮演着至关重要的角色,然而,它们在蔬菜商品管理中面临着多重挑战。这些挑战包括如何准确预测销售趋势、合理制定价格策略、以及有效制定补货计划等问题。解决这些问题对于商超来说至关重要,因为它们直接影响着销售收益、库存成本和客户满意度。因此,本研究旨在为商超提供一套全面的蔬菜商品管理策略,以帮助它们更好地应对这些挑战。针对问题一,在蔬菜商品管理中,首要问题之一是如何准确预测销售趋势。这包括了不同蔬菜品类的销售模式,如季节性销售高峰和低谷。我们需要深入了解哪些蔬菜在特定时间段内销售原创 2023-09-08 20:24:08 · 8970 阅读 · 1 评论 -
2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略(完整代码)
根据这个要求,我们可以得出是跨年进行规划的,所以我们要在附件中是要进行一起规划的,根据 result1_1 中的需要填的数据类型可以得出我们的决策变量是三维变量,但实际在求解的过程中,我们会将其转化为二维变量,即我们所求的年份是连续变化的。由于不同产物的销售量都会发生可正可负的变化,因此我们将这种变化作为一个固定的指标引入到目标函数中,比如题目中第一句话所描述的小麦和玉米会增长 5~10%之间,因此我们取其区间即变化了 5%的绝对值,再比如食用菌下降 1~5%,我们取其变化的区间,4%的绝对值。原创 2024-09-06 16:18:00 · 1909 阅读 · 1 评论 -
2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略(详细思路+matlab代码+python代码+论文范例)
根据这个要求,我们可以得出是跨年进行规划的,所以我们要在附件中是要进行一起规划的,根据 result1_1 中的需要填的数据类型可以得出我们的决策变量是三维变量,但实际在求解的过程中,我们会将其转化为二维变量,即我们所求的年份是连续变化的。由于不同产物的销售量都会发生可正可负的变化,因此我们将这种变化作为一个固定的指标引入到目标函数中,比如题目中第一句话所描述的小麦和玉米会增长 5~10%之间,因此我们取其区间即变化了 5%的绝对值,再比如食用菌下降 1~5%,我们取其变化的区间,4%的绝对值。原创 2024-09-06 16:07:42 · 5877 阅读 · 0 评论