自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(318)
  • 收藏
  • 关注

原创 【解决办法】网络训练报错AttributeError: ‘Config‘ object has no attribute ‘define_bool_state‘

深度学习网络训练报错"AttributeError: 'Config' object has no attribute 'define_bool_state'"通常是由于Flax与JAX版本不兼容导致。该错误表明Flax库试图调用JAX配置中不存在的define_bool_state方法。解决方法是通过命令"pip install --upgrade flax diffusers"升级Flax和Diffusers到最新版本,确保版本兼容性。这种API变动问题在深度学习

2025-06-30 18:44:59 217

原创 【解决办法】网络训练报错AttributeError: module ‘jax.core‘ has no attribute ‘Shape‘.

深度学习训练中报错"module 'jax.core' has no attribute 'Shape'"是由于jax与chex版本不兼容导致。该问题可通过升级chex包解决,新版本会调整对jax的API调用方式。使用命令"pip install --upgrade chex"更新chex包,其中pip是Python包管理工具,--upgrade选项指定升级操作,chex为需要升级的包名。升级后将确保chex与最新jax版本兼容。

2025-06-30 18:44:49 93

原创 【k近邻】 K-Nearest Neighbors算法距离度量选择与数据维度归一化

(K-Nearest Neighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中,KNN算法的函数为`cv.ml.KNearest_create()。

2025-06-28 13:18:34 736

原创 【k近邻】 K-Nearest Neighbors算法原理及流程

(K-Nearest Neighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中,KNN算法的函数为`cv.ml.KNearest_create()。

2025-06-28 13:18:12 622

原创 【DBeaver】跨平台数据库连接工具DBeaver Community 23.2.5安装配置使用

进入DBeaver官网选择Dowload下载对应版本安装包下载完成后打开,选择安装语言接受许可证条款组件默认选择安装位置选择开始菜单文件夹,默认即可完成安装。

2025-06-27 18:29:34 1454

原创 【MariaDB】MariaDB Server 11.3.0 Alpha下载、安装、配置

摘要 MariaDB安装指南:访问MariaDB官网下载对应版本的.msi安装文件。安装过程中需接受协议,设置数据库密码并选择UTF8编码。安装完成后,以管理员身份运行命令启动MariaDB服务,并可通过MySQL客户端登录验证。

2025-06-27 18:28:08 1118

原创 【偏微分方程】基本概念

若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该微分方程的通解。注2:不同类型的范数不影响是否满足Lipschitz条件的判断,只影响Lipschitz常数的大小。:含有参数、未知函数和未知函数的导数的方程称为微分方程,例如。:微分方程中出现的未知函数最高阶导数的阶数称为微分方程的阶。:当通解中的各任意常数都取特定值时所得到的解称为方程的特解。偏微分方程课程及理论研究的是少数特殊类型的偏微分方程的共性。线性偏微分方程:关于未知函数和未知函数的各阶偏导数是线性的。

2025-06-26 17:05:48 6413

原创 【JAX】高性能机器学习库

背景:JAX是由Google Research精心打造的高性能机器学习库。优势自动微分:极大地简化了机器学习模型的开发过程,用户无需手动计算梯度。硬件支持:支持CPU、GPU和TPU,提供了灵活的计算平台选择。NumPy API扩展:继承并扩展了NumPy API,降低了用户的学习成本,方便代码迁移。应用场景:适用于从日常小规模数据处理到大规模复杂模型训练的各种场景。

2025-06-26 17:03:25 1696

原创 【格与代数系统】格与代数系统汇总

2、一个具有两个二元运算的代数系统,若其上的两个运算满足交换律、结合律、吸收律,则称之为代数格。1、一个偏序集,若其中任意两个元素的上、下确界都存在,则称之为偏序格;中的两个二元运算满足交换律、结合律、吸收律,则存在一个格。中,小于或等于关系,即满足偏序关系,可以有关系矩阵。是有界格,1和0分别表示其最大元和最小元,则对任意。是格,若其上的两个二元运算满足分配律,即对任意的。是格,在其上定义一种补运算,即对任意的。既是有界格,又是对偶格、分配格,则称。是稠密的对偶格,且满足完全分配律,则。

2025-06-25 15:00:57 3254

原创 【格与代数系统】特殊的格

本文系统探讨了格与代数系统的概念及其分类。首先介绍了偏序集、全序集等基本概念,重点分析了分配格、有界格、有补格和布尔代数等格的重要类型及其性质。布尔代数作为兼具分配性和有补性的特殊格,具有唯一的补元运算。文章还讨论了对偶格、软代数、完备格等扩展概念,其中完备格要求所有非空子集都有确界。最后引入优软代数概念,即满足稠密性、对偶性和完全分配律的代数系统。研究表明布尔代数必为软代数,优软代数必为软代数,完备格必为有界格。这些结果为格论与代数系统的理论研究提供了系统框架。

2025-06-25 15:00:14 2241

原创 【格与代数系统】示例2

优软代数:对偶+稠密+完全+无限分配律。依据分明集合间运算的性质,详见。依据分明集合间运算的性质,详见。有补格:每个元素都有补元。对偶格:复原律+对偶律。布尔代数:有补+分配。

2025-06-24 18:58:00 472

原创 【格与代数系统】示例

因此,无限分配律第一个表达式成立,同理可得无限分配律第二个表达式,故无限分配律成立,故代数系统。一般,若一个线性序集中的元素多于两个,那它一定不是有补格。,故b=1,b=0,矛盾,故不存在b是a的补元,故。诱导的代数系统,则其上的二元运算满足(ABCD)代数系统满足交换律、幂等律、吸收律、结合律。不是有补格(有补格:每个元素都有补元)优软代数:对偶+稠密+完全分配律。优软代数:对偶+稠密+完全分配律。完备格:非空子集都有上下确界。稠密性:任意两元间仍有一元。有界格:有最大、最小元。对偶格:复原律+对偶律。

2025-06-24 18:56:00 563

原创 ICLR 2025 高频关键词

ICLR2025会议论文分析显示:大语言模型以505次提及占据主导,扩散模型(398次)成为最受关注的生成技术。研究趋势呈现向模型轻量化、训练加速和稳定性迁移的特点,同时智能体、强化学习和多模态技术成为新兴热点。关键词频次突显了当前AI研究的核心方向,包括优化(172次)、高效(210次)、鲁棒(119次)等技术挑战,以及视觉(122次)、3D(112次)等应用领域的发展态势。

2025-06-23 12:00:00 978

原创 ICLR 2025 录用3700余篇 增长1400余篇

ICLR 2025研讨会数据亮点:投稿量达11,565篇创历史新高,同比增长54%;录用率32.08%,较2024年提升4个百分点。计算机视觉与强化学习投稿占比39%,189篇入选特别展示环节。

2025-06-23 11:30:00 700

原创 【格与代数系统】基本概念和性质

格是兼具偏序结构和代数性质的重要概念。偏序格定义为任意元素对存在上下确界的偏序集,由此可诱导出具有交(∧)和并(∨)运算的代数系统。代数格则需满足交换律、结合律和吸收律。两种定义等价:偏序格可导出代数格,反之满足特定运算律的代数系统也能构造出偏序格。格理论通过这两种表现形式,架起了序结构与代数系统之间的桥梁,在数学和计算机科学中有广泛应用。

2025-06-22 11:57:55 688

原创 【格与代数系统】偏序关系、偏序集与全序集

本文介绍了二元关系的基本概念,重点讨论了偏序关系及其相关性质。定义偏序关系需满足自反性、反对称性和传递性。偏序集(poset)是指配备了偏序关系的集合。在此基础上,阐述了可比性、全序集(线性序)、链等概念。最后,详细说明了偏序集中的最值、上下界以及上下确界的定义和表示方法。这些概念构成了有序集合理论的基础框架。

2025-06-22 11:56:18 1040

原创 【支持向量机】SVM线性支持向量机学习算法——软间隔最大化支持向量机

支特向量机(support vector machines, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器。包含线性可分支持向量机、 线性支持向量机、非线性支持向量机。当训练数据时,通过学习线性分类器, 即为线性支持向量机,又称为软间隔支持向量机。

2025-06-21 12:00:00 925

原创 【感知机】感知机(perceptron)学习算法的原始形式

感知机( perceptron )是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1 和-1二值。感知机对应输入空间(特征空间)中将实例划分为正负两类的分离超平面,是一种判别模型。感知机是神经网络与支持向量机的基础感知机学习旨在求出将训练数据进行线性划分的分离超平面。感知机学习思路:1.导入基于误分类的损失函数2.利用梯度下降法对损失函数进行极小化3.代入参数得到感知机模型。感知机学习算法分类:原始形式、对偶形式。

2025-06-21 11:30:00 595

原创 【支持向量机】SVM线性可分支持向量机学习算法——硬间隔最大化支持向量机及例题详解

支特向量机(support vector machines, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器。包含线性可分支持向量机、 线性支持向量机、非线性支持向量机。当训练数据线性可分时,通过硬间隔最大化学习线性分类器, 即为线性可分支持向量机,又称为硬间隔支持向量机。

2025-06-20 18:28:04 1326

原创 退出python解释器的四种方式

Python环境提供了多种退出方式,包括快捷键Ctrl+D或者Ctrl+Z、内置函数exit()、quit()函数、OS模块等。

2025-06-20 18:27:30 3036 1

原创 【vim】vim编辑器报错E45:‘readonly‘ option is set(add ! to override)或E505:xxx is read-only无法保存配置文件解决办法(亲测有效)

【vim】使用vim编辑器报错E45:‘readonly‘ option is set(add ! to override)或报错E505: "/xxx" is read-only (add ! to override)无法保存配置文件解决办法(亲测有效)

2025-06-19 23:15:51 6198

原创 【vim】通过vim编辑器打开、修改、退出配置文件

如遇readonly文件导致无法保存成功且尝试:wq!英文输入下,按i键进入INSERT模式,修改配置文件。完成修改后,按esc键退出INSERT模式。通过vim编辑器打开任一配置文件。

2025-06-19 23:15:40 2682

原创 【CiteSpace】引文可视化分析软件CiteSpace下载与安装

译“引文空间”,是一款着眼于分析科学分析中蕴含的潜在知识,是在科学计量学、数据可视化背景下逐渐发展起来的引文可视化分析软件。由于是通过可视化的手段来呈现科学知识的结构、规律和分布情况,因此也将通过此类方法分析得到的可视化图形称为“科学知识图谱”。本文以基础版CiteSpace(Basic)version 6.2.R6为例。注:CiteSpace(Basic)每次版本更新后需重新下载安装,否则无法正常使用。找到CiteSpace(Basic),选择View product。安装完成后打开CiteSpace。

2025-06-18 23:48:55 4776

原创 【隐马尔可夫模型】隐马尔可夫模型的观测序列概率计算算法及例题详解

隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状志的序列,再由各个状态随机生成一个观测而产生观测的序列的过程。模型本身属于生成模型,表示状态序列和观测序列的联合分布,但是状态序列是隐藏不可观测的。观测序列概率的计算需要有效的算法支撑。模型,A为状态转移概率矩阵,B为观测概率矩阵,π 为初始状态概率向量。

2025-06-18 23:48:07 1168 1

原创 【隐马尔可夫模型】用后向算法计算观测序列概率P(O|λ)

【隐马尔可夫模型】用后向算法计算观测序列概率P(O|λ

2025-06-17 23:21:45 484

原创 【隐马尔可夫模型】用前向算法计算观测序列概率P(O|λ)

【隐马尔可夫模型】用前向算法计算观测序列概率P(O|λ)

2025-06-17 23:20:57 495

原创 【illustrator】凌乱线条感Poster

illustrator实操教程——凌乱线条感Poster

2025-06-16 17:33:37 491 1

原创 【Linux】虚拟机ubuntu-20.04.6安装配置教程(可直接联网)

LInux虚拟机ubuntu-20.04.6安装配置(可直接联网)

2025-06-16 17:30:37 4423

原创 知识点|MTV模式(Model-template-view)

MTV(Model-template-view)模式是Django中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model)、模板(Template)和视图(View)。Django作为Web框架,需要一种很便利的方法动态的生成HTML网页,因此有了模板(T)这个概念。模板包含所需HTML的部分代码以及一些特殊的语法,特殊语法用于描述如何将视图传递的数据动态插入HTML网页中。视图(V)类似MVC模式中控制器和视图的集成。

2025-06-14 17:17:24 1816

原创 知识点|MVC模式(Model–view–controller)

MVC (Model–view–controller)模式是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model)、视图(View)和控制器(Controller)。MVC 以一种插件式的、松耦合的方式连接在一起。浏览器通过视图向控制器发出请求,控制器接收到请求后选择模型进行处理,处理完请求以后再转发到用于展示结果的视图,进行视图界面的渲染并做出最终响应。

2025-06-14 17:16:59 1297 1

原创 【SAS逐步回归法】REG过程逐步回归求解最优方程

SAS逐步回归分析摘要:通过设定0.10的引入/剔除标准,对包含x1-x4自变量的数据集进行变量筛选。分析显示初始最优模型包含x1、x2、x4,但最终剔除x4后,保留x1和x2的二元回归模型为最优解(需补充具体R²值)。该过程通过REG过程的stepwise选项实现,演示了变量动态筛选机制,平衡了模型简洁性与解释力。诊断图显示模型拟合情况良好(需补充残差分布特征)。结果表明x1和x2是预测y的关键变量。

2025-06-13 20:04:12 1501 1

原创 【SAS求解多元回归方程】REG多元回归分析-多元二次回归

【SAS求解多元回归方程】REG多元回归分析-多元二次回归

2025-06-13 20:01:50 1436 1

原创 【SAS求解多元回归方程】REG多元回归分析-多元一次回归

摘要:本文通过SAS的REG过程演示了多元线性回归分析。示例使用8组观测数据,建立y与x1-x3的回归模型。分析内容包括参数估计(含p值检验)、方差分析(回归平方和、残差平方和)、模型显著性检验,以及决定系数、复相关系数等统计量。当p值显示某些自变量不显著时,需进行变量筛选优化模型。最终输出了回归方程、拟合诊断及各项统计指标,全面评估了模型的解释力和拟合效果。

2025-06-12 16:46:38 2596 1

原创 【清晰教程】可视化数据集标注工具Labelimg零基础安装

可视化数据集标注工具Labelimg的零基础安装

2025-06-12 16:44:11 643 1

原创 【一文理解】下采样与上采样区别

对图像进行1/n下采样,原图像分辨率为H*W,下采样分辨率变为(H/n)*(W/n)对图像进行n上采样,原图像分辨率为H*W,下采样分辨率变为(nH)*(nW)转置卷积是卷积的一种,可使图片恢复成卷积前的尺寸,但是对应像素点的数值改变。主要通过是池化层或卷积层进行下采样。过滤无关信息,保留关键信息。反向提取特征,还原关键信息。上采样不是下采样的逆操作。

2025-06-11 18:05:46 2052

原创 似然函数&对数似然函数&负对数似然函数

似然函数Lθ∣XLθ∣X是在给定参数θ\thetaθ下,观测数据XXX出现的概率。它是统计推断中的一个核心概念,用于衡量在特定参数假设下,观测数据的合理性。假设我们有一组观测数据Xx1x2xnXx1​x2​xn​,并且假设这些数据是独立同分布的iid(i.i.d.)iidLθ∣X∏i1nPxi∣θLθ∣Xi1∏n​Pxi​∣θθ\thetaθ。

2025-06-11 18:04:04 996

原创 【解决办法】git clone报错unable to access ‘xxx‘: SSL certificate problem

这意味着Git在进行HTTPS连接时不会验证服务器的SSL证书,可能会导致不安全的连接。在特定情况下,如果你无法正确地验证证书,或者遇到错误的SSL证书,你可以使用这个命令来解决问题。这个命令不仅复制远程仓库中的所有文件,还复制仓库的历史记录,使得你可以在本地进行版本控制操作,如提交(commit)、分支(branch)和合并(merge)等。配置git证书信任:有时候,Git无法识别服务器的SSL证书,需要手动配置信任。更新git版本:可能是你使用的git版本较老,无法识别最新的SSL证书。

2025-06-10 19:43:27 587

原创 DataFrame中.iloc 属性

iloc是 Pandas 库中 DataFrame 和 Series 对象的一个属性,用于基于整数位置的索引来选择数据。与基于标签的.loc索引不同,.iloc使用从 0 开始的整数位置来访问行和列。这对于处理需要按位置而不是按标签选择数据的场景非常有用。

2025-06-10 19:42:53 1178

原创 【解决办法】最新0.13.2Seaborn未以关键字参数传递数据,报错kdeplot() takes from 0 to 1 positional arguments but 2 were given

KDEPlot(Kernel Density Estimate Plot,核密度估计图)是seaborn库中一个用于数据可视化的函数,它基于核密度估计(KDE)这一非参数统计方法来估计数据的概率密度函数。KDEPlot能够直观地展示数据的分布特征,对于单变量和双变量数据均适用。

2025-06-09 22:16:44 503

原创 曲面的存在性定理

两个满足Gauss-Codazzi方程的二次微分形式在局部定义一张正则参数曲面。给定曲面的第一、第二基本形式,问是否存在相应的曲面。因而问题归结为验证Gauss-Codazzi方程。本题的情况都是选择正交曲率线网为参数曲线网的情况。故不存在符合要求的曲面。故不存在符合要求的曲面。关于这个问题最好的结论被称为。这是曲面的存在性问题。为第一、第二基本形式?问是否有曲面,分别以。都有简单漂亮的形式。

2025-06-09 22:15:55 3949

Python企业排名、地域分布与词云分析数据集

Python企业排名、地域分布与词云分析数据集

2024-09-02

生成式深度学习数学原理.pdf

生成式深度学习数学原理.pdf

2024-07-21

HCCDA – AI华为云人工智能开发者认证60判断题及答案.docx

HCCDA – AI华为云人工智能开发者认证60判断题及答案+针对华为云人工智能开发者认证理论考试+原题题库

2023-09-13

C语言程序设计期末试题及答案详解1.pdf

C语言程序设计期末试题及答案详解1.pdf

2023-09-11

C语言程序设计期末试题及答案解析1-3.pdf

C语言程序设计期末试题及答案解析1-3.pdf

2023-09-10

C语言程序设计期末试题及答案解析1-2.pdf

C语言程序设计期末试题及答案解析1-2.pdf

2023-09-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除