BFS解决多源最短路问题_01矩阵_C++【含多源最短路问题介绍+dist数组介绍】


0. 多源最短路问题介绍


在这里插入图片描述

如图,红色是出发点,蓝色是终点。以前我们做的题中,出发点只有一个,所谓多源的意思就是,出发点有多个,求最短路径。

当然,这种题的解题思路就是,将所有的出发点,合在一起,变成一个超级源点,直接计算从这个超级源点出发,到目标点的最短距离即可。


1. 题目解析+算法分析


leetcode链接:https://leetcode.cn/problems/2bCMpM/description/

1. 题目解析

  • 给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。两个相邻元素间的距离为 1 。

  • 示例 1:

在这里插入图片描述

输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]
  • 示例 2:

在这里插入图片描述

输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]

2. 算法分析

  • 我们可以将所有的0先入队列,这一步是形成超级源点的一步。然后开始bfs向外搜索。

2. 代码实现


1. 版本1:vis数组版

class Solution {
    int dx[4] = {0, 0, 1, -1};
    int dy[4] = {1, -1, 0, 0};
    int m, n;

public: 
    vector<vector<int>> updateMatrix(vector<vector<int>>& mat) 
    {
        m = mat.size(), n = mat[0].size();
        bool vis[m][n];

        // 1. 将所有的源点0入队
        queue<pair<int, int>> q;
        for (int i = 0; i < m; i++)
        {
            for (int j = 0; j < n; j++)
            {
                if (mat[i][j] == 0) 
                {
                    q.push({i, j});
                    vis[i][j] = true;
                }
                else
                {
                    vis[i][j] = false;
                }
            }
        }

        // 2. 开始搜索
        int count = 0;
        while (q.size())
        {
            count++;
            int sz = q.size();
            while (sz--)
            {
                auto [a, b] = q.front();
                q.pop();
                for (int i = 0; i < 4; i++)
                {
                    int x = a + dx[i], y = b + dy[i];
                    if (x >= 0 && x < m && y >= 0 && y < n && mat[x][y] && !vis[x][y])
                    {
                        mat[x][y] = count;
                        q.push({x, y});
                        vis[x][y] = true;
                    }
                }
            }
        }

        return mat;
    }
};

2. 版本2:dist数组版

  • 版本1中,我们需要用一个vis数组,记录每个节点有没有被访问过,还要用一个变量sz,来实现一层一层向外扩展的动作。并且需要一个变量count记录步数。
  • 上面这三个动作,都可以通过一个dist数组实现,它的实际意义是记录每个位置离源点的距离。
    • dist数组初始化为-1,表示该位置没有被访问过;
    • dist数组值不为-1,表示搜索过了,且当前的值为遍历层数。
class Solution {
    int dx[4] = {0, 0, 1, -1};
    int dy[4] = {1, -1, 0, 0};
    int m, n;

public: 
    vector<vector<int>> updateMatrix(vector<vector<int>>& mat) 
    {
        m = mat.size(), n = mat[0].size();

        // dist[i][j] == -1 表示:没有被搜索过
        // dist[i][j] != -1 表示:搜索过了,且值为最短路径

        vector<vector<int>> dist(m, vector<int>(n, -1));
        queue<pair<int, int>> q;

        // 1. 将所有的源点加入到队列中
        for (int i = 0; i < m; i++)
        {
            for (int j = 0; j < n; j++)
            {
                if (mat[i][j] == 0)
                {
                    q.push({i, j});
                    dist[i][j] = 0;
                }
            }
        }

        // 2. 一层一层向外扩展
        while(q.size())
        {
            auto [a, b] = q.front();
            q.pop();
            for (int i = 0; i < 4; i++)
            {
                int x = a + dx[i], y = b + dy[i];
                if (x >= 0 && x < m && y >= 0 && y < n && dist[x][y] == -1)
                {
                    q.push({x, y});
                    dist[x][y] = dist[a][b] + 1;
                }
            }
        }

        return dist;
    }
};

<think>好的,用户想学习C++中与图论相关的算法或实现。我需要根据提供的引用内容来组织回答。首先,用户提到的引用有三个,分别涉及图论的基础算法、具体实现以及欧拉路径算法。我需要将这些信息结构化,确保覆盖主要知识点,并生成相关问题。 首先,应该介绍图论的基本概念,然后分模块讲解常见算法。引用1提到了图论的重要性,引用2详细列出了各种算法,引用3则专门讲欧拉路径。需要将算法分类,比如搜索、短路、生成树、二分图、欧拉路径等。每个部分需要给出代码示例,比如深度优先搜索可以用邻接表实现,Dijkstra算法用优先队列优化等。代码示例要符合C++语法,同时注意注释和格式。 接下来,生成相关问题需要考虑用户可能遇到的后续疑问,比如算法比较、应用场景、复杂度分析等。需要确保问题与内容相关,并引导用户深入学习。 需要检查是否符合系统级指令:数学公式是否正确,使用中文,引用标识是否正确添加。例如,引用[^2]对应到引用2的内容,在讲解拓扑排序时提到应用场景需要添加引用。同时,代码块要正确使用语法高亮,比如标记为C++后,确保回答结构清晰,分点明确,帮助用户逐步理解图论算法的实现。可能还需要注意术语的准确性,例如邻接矩阵和邻接表的区别,不同算法的适用场景等。</think>以下是对C++图论算法实现的系统性讲解,包基础算法分类、代码实现及核心应用场景: # C++图论算法实现指南 ## 一、图论基础实现 ### 1. 图的存储结构 (1) 邻接矩阵(适合稠密图) ```cpp const int N = 1e3; int g[N][N]; // 权重存储 ``` (2) 邻接表(适合稀疏图) ```cpp vector<pair<int,int>> adj[N]; // {目标节点, 边权} ``` ### 2. 搜索算法 **深度优先搜索(DFS)应用:求树的重心** ```cpp int dfs(int u) { st[u] = true; int sum = 1, res = 0; for (int v : adj[u]) { if (!st[v]) { int s = dfs(v); res = max(res, s); // 记录大子树节点数 sum += s; } } res = max(res, n - sum); // 父节点所在子树 ans = min(ans, res); // 更新大值 return sum; } ``` **广度优先搜索(BFS)应用:层次遍历** ```cpp void bfs(int start) { queue<int> q; q.push(start); dist[start] = 0; while (!q.empty()) { int u = q.front(); q.pop(); for (auto [v, w] : adj[u]) { if (dist[v] == -1) { dist[v] = dist[u] + 1; q.push(v); } } } } ``` ## 二、核心算法实现 ### 1. 短路径算法 **Dijkstra算法(堆优化版)时间复杂度$O(m \log n)$** ```cpp priority_queue<PII, vector<PII>, greater<PII>> heap; heap.push({0, 1}); dist[1] = 0; while (!heap.empty()) { auto [d, u] = heap.top(); heap.pop(); if (st[u]) continue; st[u] = true; for (auto [v, w] : adj[u]) { if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; heap.push({dist[v], v}); } } } ``` ### 2. 小生成树 **Prim算法实现(适合稠密图)** ```cpp int prim() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; int res = 0; for (int i = 0; i < n; ++i) { int t = -1; for (int j = 1; j <= n; ++j) if (!st[j] && (t == -1 || dist[j] < dist[t])) t = j; res += dist[t]; st[t] = true; for (int j = 1; j <= n; ++j) dist[j] = min(dist[j], g[t][j]); } return res; } ``` ## 三、进阶算法实现 ### 欧拉路径算法(Hierholzer算法) ```cpp stack<int> path; void dfs(int u) { while (!adj[u].empty()) { int v = adj[u].back(); adj[u].pop_back(); dfs(v); } path.push(u); } ``` 该算法通过后序压栈实现路径记录,时间复杂度$O(m)$[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-指短琴长-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值