【数学建模】基于随机机会约束规划方法对旅行商问题TSP求解

本文介绍了如何利用随机机会约束规划模型结合改进型遗传算法解决旅行商问题。模型考虑了旅行时间的随机性,以确保在一定置信水平下满足约束。文章详细阐述了Grefenstettet编码、适应度函数、选择算子、交叉和变异算子等遗传算法组件,并通过100个城市的算例验证了算法的准确性和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

旅行商问题(Traveling Salesman Problem, abbr. TSP)是一个典型的组合优化难题,属于 NP 难题,在交通运输、管道铺设、路线选择等很多领域具有广泛应用,对这个问题的研究具有现实意义。下文将采用机会约束规划模型结合遗传算法求解 TSP 问题。

Traveling Salesman Problem [1]

随机机会约束规划模型介绍

随着各领域的发展,以最短路径作为求解目标的方法已经无法完全解决现实问题。

为了提高旅行商的效率,我们在研究旅行商问题时要把旅行时间作为考虑因素。旅行时间为随机变量,假定旅行商在不同城市间的旅行时间服从正态分布,采用机会约束规划模型求解。该模型的特点是随机约束条件至少以一定的置信水平成立。

「随机机会约束规划模型」是一类随即规划模型,该模型的显著特点是随机约束条件至少以一定的置信水平成立,一般形式如下

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值