数据结构----二叉树已知中序和后序序遍历序列求先序遍历

根据中序和后序遍历序列可以唯一确定一棵二叉树,但先序和后序无法做到。示例中给出了中序和后序遍历序列,用于还原二叉树并求解其先序遍历序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

       通过先序和中序或者中序和后序我们可以还原出原始二叉树,但是通过先序和后序是无法还原出原始二叉树也即是说,只有通过先序和中序,或者中序和后序我们才可以唯一的确定一个二叉树。

已知中序和后序

中序:BDCEAFHG

后序:DECBHGFA

还原二叉树

求先序

ABCDEFGH

在C语言中,给定一棵已知二叉树序遍历(根节点 -> 左子树 -> 右子树)序遍历(左子树 -> 根节点 -> 右子树),我们可以通过递归的方式后序遍历(左子树 -> 右子树 -> 根节点)。这是因为前、中后序遍历之间存在一定的关联: 1. **后序遍历**的根节点在最后,所以我们可以通过以下步骤找到它: -遍历到当前节点时,如果它是序遍历的第一个元素,那么它就是根节点。 - 接着,我们在中序遍历中查找该节点的位置。由于中序遍历根节点位于左右子树之间,所以我们可以找到从当前开始的剩余部分,这部分就是中序遍历剩下的左子树右子树。 - 对这个剩余部分分别进行后序遍历即可得到完整的后序遍历序列。 下面是递归实现的伪代码示例: ```c struct TreeNode *findRoot(struct TreeNode *root, int preorder[], int size) { // 序遍历第一个元素即为根节点 if (preorder[0] == root->val) return root; // 中序遍历找到根节点的位置 for (int i = 1; i < size; i++) { if (preorder[i] == root->val) { return findRoot(root->left, inorder, size); } } } void postorderTraversal(struct TreeNode *root, int inorder[], int size) { if (root == NULL) return; postorderTraversal(root->left, inorder, size); postorderTraversal(root->right, inorder, size); // 将找到的根节点添加到后序序列的末尾 insertAtEnd(postorder, root->val); // 假设insertAtEnd()是一个函数用于将值追加到数组末尾 } ``` 这里假设`inorder[]`数组保存了中序遍历的结果,并且`postorder[]`数组用于存储最终的后序遍历结果。你需要根据实际情况调整这些操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wellnw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值