【算法导论】分治策略求最大子数组问题分析、伪代码及C代码实现

本文详细介绍了如何使用分治策略解决最大子数组问题,该问题旨在找到数组中和最大的连续子数组。通过递归地划分数组并计算跨越中点的最大子数组,最终确定整个数组的最大子数组。C代码实现展示了这一过程,对于包含负数的数组,这种方法能有效找出最大和的子数组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大子数组问题

        寻找A的和最大的非空连续子数组,我们称这样的连续子数组为最大子数组。如下所示,A[1..16]的最大子数组为A[8..11],其和为43,是A的所有子数组中和最大的。

注意: 只有当数组中包含负数时,最大子数组问题才有意义。如果所有数组元素都是非负数,子数组问题没有任何难度,因为整个数组的和肯定最大。

使用分治策略的求解方法

        我们要寻找子数组A[low..high]的最大子数组。使用分治技术意味着我们要将子数组划分为两个规模尽量相等的子数组。也就是说,找到子数组的中央位置,比如mid,然后考虑求解两个子数组A[low..mid]和A[mid+1..high]。如下所示A[low..high]的任何连续子数组A[i..j]所处的位置必然是以下三种情况之一:

        1.完全位于子数组A[low..mid]中,因此low≤i≤j≤mid 

        2.完全位于子数组A[mid+1..high]中,因此mid<i≤j≤high

        3.跨越了中点,因此low≤i≤mid<j≤high

        因此,A[low..high]的一个最大子数组所处的位置必然是这三种情况之一。实际A[low..high]的一个最大子数组必然是完全位于A[low..mid]中、完全位于A[mid+1..high]中或者跨越中点的所有子数组中和最大者。我们可以递归地求解A[low..mid]和A[mid+1..high]的最大子数组,因为这两个子问题仍是最大子数组问题,只是规模更小。因此,剩下的全部工作就是寻找跨越中点的最大子数组,然后在三种情况中选取和最大者。

         我们可以很容易地在线性时间(相对于子数组A[low..high]的规模)内求出跨越中点的最大子数组。如上图b所示,任何跨越中点的子数组都是由两个子数组A[i..mid]和A[mid+1..j]组成,其中low≤i≤mid且mid<j≤high。因此,我们只需找出形如A[i..mid]和A[mid+1..j]的最大子数组,然后将其合并即可。

 FIND-MAX-CORSSING-SUBARRAY伪算法

        FIND-MAX-CORSSING-SUBARRAY接收数组A和下标low、mid和high输入,返回一个下标元组划定跨越中点的最大子数组的边界,并返回最大子数组中值的和。

FIND-MAX-CROSSING-SUBARRAY(A,low,mid,high)
1 left-sum = -∞
2 sum = 0
3 for i = mid downto low
4     sum = sum + A[i]
5     if sum > left-sum
6        left-sum = sum
7        max-left = i
8 right-sum = -∞
9 sum = 0
10 for j = mid+1 to high
11    sum = sum + A[j]
12    for sum > right-sum
13        right-sum = sum
14        max-right = j
15 return (max-left,max-right,left-sum + right-sum)

        此过程的工作方式如下所述

        第1~7行求出左半部A[low..mid]的最大子数组。由于次子数组必须包含A[mid], 第3~7行的for循环变量i是从mid开始,递减直到low,因此,它所考察的每个子数组都具有A[i..mid]的形式。第1~2行初始化变量left-sum和sum,前者保存目前位置找到的最大和,后者保存A[i..mid]中所有值的和。每当第5行找到一个子数组A[i..mid]的和大于left-sum时,我们在第6行将left-sum更新为这个子数组的和,并在第7行更新变量max-left来记录当前下标i。

        第8~14行求右半部A[mid+1..high]的最大子数组,过程与左半边类似。此处,第10~14行的for循环的循环变量j是从mid+1开始,递增直到high,因此,它所考察的每个子数组都具有A[mid+1..j]的形式。

        最后,第15行返回下标max-left和max-right,划定跨越中点的最大子数组的边界,并返回子数组A[max-left..max-right]的和left-sum+right-sm.

 FIND-MAXIMUM-SUMARRAY(A,low,high)伪算法

FIND-MAXIMUM-SUBARRAY(A,low,high)
1 if high == low
2   return (low,high,A[low])
3 else mid = [(low+high)/2]
4    (left-low,left-high,left-sum) = FIND-MAXIMUM-SUBARRAY(A,low,mid)
5    (right-low,right-high,right-sum) = FIND-MAXIMUM-SUBARRAY(A,mid+1,high)    
6    (cross-low,cross-high,cross-sum) = FIND-MAX-CROSSING-SUBARRAY(A,low,mid,high)
7    if left-sum ≥ right-sum and left-sum ≥ cross-sum
8        return (left-low,left-high,left-sum)
9    else if right-sum ≥ left-sum and right-sum ≥ cross-sum
10       return (right-low,right-high,right-sum)
11   else return (cross-low,cross-righ,cross-sum)

        初始调用FIND-MAXIMUM-SUBARRAY(A,1,A.length)会求出A[1..n]的最大子数组。 与FIND-MAX-CROSSING-SUBARRAY相似,递归过程FIND-MAXIMUM-SUBARRAY返回一个下标元组,划定了最大子数组的边界,同时返回最大子数组中的值之和。

        第1行测试基本情况,即子数组只有一个元素的情况,在此情况下,子数组只有一个子数组(它自身),因此第2行放回一个下标元组,开始和结束下标均指向唯一的元素,并返回此元素的值作为最大和。

        第3~11行处理递归情况。第3行划分子数组,计算中点下标mid.我们称子数组A[low..mid]为左子数组,A[mid+1..high]为右子数组。因为我们知道子数组A[low..high]至少包含两个元素,则左、右两个子数组各至少包含一个元素。第4行和第5行分别递归地求解左右子数组中的最大子数组。第6~11行完成合并工作。第6行求跨越中点的最大子数组。第7行检测最大和子数组是否在左子数组中,若是,第8行返回此子数组。否则,第9行检测最大和子数组是否在右子数组中,若是,第10行返回此子数组。如果左右子数组均不包含最大子数组,则最大子数组必然跨越中点,第11行将其返回。

C代码实现

注意数组下标从0开始,所以主函数调用FIND_MAXIMUM_SUBARRAY(A,0,length),low=0 

#include <stdio.h>
#include <stdlib.h>

typedef struct max_info{
	int low;
	int high;
	int sum;
}MAX_INFO;
MAX_INFO FIND_MAX_CROSSING_SUBARRAY(int *A, int low, int mid, int high);
MAX_INFO FIND_MAXIMUM_SUBARRAY(int *A, int low, int high);

int main(void)
{
	MAX_INFO max_info = {0};	
	int i = 0;
	int A[] = {13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7};	
	int length=sizeof(A)/sizeof(A[0]);

	max_info = FIND_MAXIMUM_SUBARRAY(A,0,length);
	printf("max_info.low=%d max_info.high=%d max_info.sum=%d\n",max_info.low,max_info.high,max_info.sum);
	for(i = max_info.low; i  <= max_info.high; i++)
		printf("%d ", A[i]);
	printf("\n");

	return 0;
}

MAX_INFO FIND_MAX_CROSSING_SUBARRAY(int *A, int low, int mid, int high)
{
	int left_sum = -10000;
	int right_sum = -10000;
	int sum = 0;
	int max_left = 0;
	int max_right = 0;
	int i = 0;
	int j = 0;
	
	for(i = mid; i >=low; i--)
	{
		sum = sum + A[i];
		if(sum > left_sum)
		{
			left_sum = sum;
			max_left = i;
		}
	}
	sum = 0;
	for(j = mid + 1; j < high; j++)
	{
		sum = sum + A[j];
		if(sum > right_sum)
		{
			right_sum = sum;
			max_right = j;
		}
	}
	MAX_INFO maxinfo = {0};
	maxinfo.low = max_left;
	maxinfo.high = max_right;
	maxinfo.sum = left_sum + right_sum;

	return maxinfo;
}
MAX_INFO FIND_MAXIMUM_SUBARRAY(int *A, int low, int high)
{
	int mid = 0;
	MAX_INFO maxinfo = {0};
	if(low == high){	
		maxinfo.low = low;
		maxinfo.high = high;
		maxinfo.sum = A[low];
		return maxinfo;
	} else {
		MAX_INFO left_info = {0};
		MAX_INFO right_info = {0};
		MAX_INFO cross_info = {0};
		mid = (low+high)/2;
        //左侧最大子数组
		left_info = FIND_MAXIMUM_SUBARRAY(A,low,mid);
        //右侧最大子数组
		right_info = FIND_MAXIMUM_SUBARRAY(A,mid+1,high);
        //跨越中点最大子数组
		cross_info = FIND_MAX_CROSSING_SUBARRAY(A,low,mid,high);
		if(left_info.sum >= right_info.sum && left_info.sum >= cross_info.sum){
			printf("Left: left_info.low=%d left_info.high=%d left_info.sum=%d\n",
				left_info.low,left_info.high,left_info.sum);
			return left_info;
		} else if(right_info.sum >= left_info.sum && right_info.sum >= cross_info.sum) {
			printf("right: right_info.low=%d right_info.high=%d right_info.sum=%d\n",
				right_info.low,right_info.high,right_info.sum);
			return right_info;
		} else {
			printf("cross_info: cross_info.low=%d cross_info.high=%d cross_info.sum=%d\n",
				cross_info.low,cross_info.high,cross_info.sum);
			return cross_info;
		}
	}
}

测试结果 

Left: left_info.low=0 left_info.high=0 left_info.sum=13
Left: left_info.low=0 left_info.high=0 left_info.sum=13
Left: left_info.low=3 left_info.high=3 left_info.sum=20
right: right_info.low=3 right_info.high=3 right_info.sum=20
Left: left_info.low=5 left_info.high=5 left_info.sum=-16
right: right_info.low=8 right_info.high=8 right_info.sum=20
right: right_info.low=8 right_info.high=8 right_info.sum=20
Left: left_info.low=3 left_info.high=3 left_info.sum=20
right: right_info.low=10 right_info.high=10 right_info.sum=12
Left: left_info.low=11 left_info.high=11 left_info.sum=-5
Left: left_info.low=10 left_info.high=10 left_info.sum=12
Left: left_info.low=13 left_info.high=13 left_info.sum=15
Left: left_info.low=15 left_info.high=15 left_info.sum=7
cross_info: cross_info.low=13 cross_info.high=15 cross_info.sum=18
right: right_info.low=13 right_info.high=15 right_info.sum=18
cross_info: cross_info.low=7 cross_info.high=10 cross_info.sum=43
max_info.low=7 max_info.high=10 max_info.sum=43
18 20 -7 12 

    由此,计算出最大子数组为A[7..10],数组下标从0开始。

### C语言实现分治最大子数组 #### 数据输入方法 为了使程序能够接收用户输入的数据,可以利用标准库函数 `scanf` 来读取整数数组。通常情况下,先让用户输入数组的大小,再依次输入数组中的各个元素。 #### 分治法的核心思想 分治法的思想是将原问题分解成若干个规模较小但结构相同的子问题,递归地解决这些子问题,最后将子问题的结果合并得到最终答案。对于最大子数组问题而言,任意连续子数组最大可能出现在三种情况之一:完全位于左半部分、完全位于右半部分或者跨越中间位置[^1]。 #### 完整代码示例 以下是完整的C语言代码实现了基于分治法的最大子数组计算功能: ```c #include <stdio.h> #include <limits.h> // 找到跨中间点的最大子数组 int findMaxCrossingSubarray(int arr[], int low, int mid, int high) { int leftSum = INT_MIN; int sum = 0; for (int i = mid; i >= low; i--) { sum += arr[i]; if (sum > leftSum) { leftSum = sum; } } int rightSum = INT_MIN; sum = 0; for (int j = mid + 1; j <= high; j++) { sum += arr[j]; if (sum > rightSum) { rightSum = sum; } } return leftSum + rightSum; } // 分治法核心逻辑 int maxSubArraySum(int arr[], int low, int high) { if (low == high) { // 只有一个元素的情况 return arr[low]; } else { int mid = (low + high) / 2; int leftSum = maxSubArraySum(arr, low, mid); int rightSum = maxSubArraySum(arr, mid + 1, high); int crossSum = findMaxCrossingSubarray(arr, low, mid, high); if ((leftSum >= rightSum) && (leftSum >= crossSum)) { return leftSum; } else if ((rightSum >= leftSum) && (rightSum >= crossSum)) { return rightSum; } else { return crossSum; } } } // 主函数用于处理数据输入并调用上述函数 int main() { int n; printf("输入数组长度: "); scanf("%d", &n); int arr[n]; printf("输入 %d 个整数:\n", n); for (int i = 0; i < n; i++) { scanf("%d", &arr[i]); } int result = maxSubArraySum(arr, 0, n - 1); printf("最大子数组为: %d\n", result); return 0; } ``` #### 关键说明 1. **findMaxCrossingSubarray 函数** 此函数负责找到跨越中间点的最大子数组。它分别向左侧右侧扩展,记录下两侧的最大累加值,并返回两者的总。 2. **maxSubArraySum 函数** 这是一个递归函数,按照分治策略逐步缩小问题范围直到单个元素为止。随后比较三个候选区域(左边、右边以及跨越中间的部分),选取其中最大的作为当前区间的最优解。 3. **main 函数** 提供了一个简单的交互界面来获取用户的输入,并展示结果。 #### 时间复杂度分析算法的时间复杂度为 \(O(n \log n)\),因为每次都将数组分成两个相等的部分进行递归操作,而每一层的操作量为线性的。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wellnw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值