使用的框架:MMRotate:https://github.com/open-mmlab/mmrotate
(是一个集成的工具包:它主要包括五个部分,apis,core,datasets,models和utils:
apis:定义了模型推理过程。
datasets:定义了旋转目标驾车呢过程中的一些数据集读取,包括dior、dota、hrsc。
- transformers:一系列数据增强操作。
evaluation:定义了一系列的旋转目标检测的评价指标。
models:包含了一些旋转目标检测模型(注意,此框架只包含了旋转目标检测中特有的一些内容,部分检测器仍然来自mmdet)。
-
backbones:提供了一些骨干网络模型。
-
dense_heads:提供了一些单阶段目标检测模型的检测头。
-
detectors:提供了一些旋转目标检测器,便于后面通过config实例化模型。
-
layers:提供一些特有的增强层。
-
losses:旋转目标检测的一些特有的损失函数。
-
necks:旋转目标检测的一些特有的颈部模块。
-
roi_heads:双阶段目标检测器的roi检测头。
-
- bbox_heads: roi head检测头。
- roi_extractors: 从旋转roi中获取对应特征。
-
task_modules:相关任务模块
-
- assigners:正负样本分配器。
- coders:带角度信息的编码器。
- prior_generators:先验框生成器
-
utils:一些杂项功能函数。包括e2cnn模块,旋转框的重叠度计算、orconv等。
structures:旋转目标检测的一些数据流结构体。
- bbox:重叠度计算,不同旋转框表示的转换,旋转框数据结构RotatedBoxes。
testing:输出日志文件、打印路径等一系列小函数。
utils:收集系统环境,集成预测结果等函数。
visualization:对检测结果可视化的相关工具。)
首先,安装Miniconda,配置anaconda,创建虚拟环境。
然后安装模型运行所需要的pytorch、MMCV和MMDetection等计算