
深度学习基础
LN烟雨缥缈
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
最容易理解的贝叶斯算法原理
1. 简介 在网络上介绍贝叶斯定理,贝叶斯网格的资料随处可见,我在此处就简单给大家的阐述一下什么是贝叶斯,贝叶斯方法其实在高中的时候我们就已经开始接触了,高中的概率大部分讲述的就是贝叶斯方法。 其实在贝叶斯方法真正的被人们认可之前,频率派是概率的主导,假设又一袋球,里面有若干红球和黑球,在贝叶斯之前你随便问一个人拿出红球的概率是多少,他会说50%。嘿!懵逼不?没有黑球红球的数量怎么知道的50%,频率派中的思考方式是不是红球就是黑球,所以50%。2.1 贝叶斯方法的提出 托马斯·贝...转载 2021-11-19 13:08:55 · 5733 阅读 · 0 评论 -
plt.imshow()无法显示两站图片?
在做测试的时候,显示图片,从cv2读取image之后发现只能显示一张图片,如果plt.imshow()显示来张图片的话,第二章会覆盖第一张图片的位置,其实只要添加一行命令即可:plt.show(),举个例子:img1=plt.imread("test1.jpg")plt.imshow(img1)plt.show()img2=plt.imread("test2.jpg")plt.imshow(img2)plt.show()...原创 2021-09-08 11:19:31 · 992 阅读 · 0 评论 -
一文看懂训练集loss与测试集loss关系
train loss 不断下降,test loss不断下降,说明网络仍在学习;train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化)train loss 趋于不变,test loss不断下降,说明数据集100%有问题;train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;或者是数据集有问题(数据集标注错误数据比较多)train loss 不断上升,test loss不断上升,说明网络结构设计转载 2021-09-07 09:38:29 · 4005 阅读 · 1 评论 -
一文看懂训练集loss 与验证集loss关系说明
train loss 不断下降,test loss不断下降,说明网络仍在学习;train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化)train loss 趋于不变,test loss不断下降,说明数据集100%有问题;train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;或者是数据集有问题(数据集标注错误数据比较多)train loss 不断上升,test loss不断上升,说明网络结构设计转载 2021-11-17 10:42:26 · 10664 阅读 · 4 评论 -
详细说明 NVIDIA-SMI GPU信息显示
在进行深度学习实验时,GPU 的实时状态监测十分有必要。今天详细解读一下 nvidia-smi 命令。这里写图片描述上图是服务器上 GeForce GTX 1080 Ti 的信息,下面一一解读参数。上面的表格中的红框中的信息与下面的四个框的信息是一一对应的:GPU:GPU 编号;Name:GPU 型号;Persistence-M:持续模式的状态。持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这里显示的是off的状态;Fan:风扇转速,从0到100%之间变动;Tem转载 2021-09-03 08:17:27 · 1567 阅读 · 0 评论 -
CNN中卷积和池化计算公式
卷积计算公式1、卷积层输入特征图(input feature map)的尺寸为:H(input)×W(input)×C(input)H(input)表示输入特征图的高W(input)表示输入特征图的宽C(input)表示输入特征图的通道数(如果是第一个卷积层则是输入图像的通道数,如果是中间的卷积层则是上一层的输出通道数2、卷积层的参数有如下几个输出通道数为K正方形卷积核的边长为F...原创 2021-08-27 10:28:52 · 14131 阅读 · 0 评论 -
loss函数取对数的作用和意义
平时在一些数据处理中,经常会把原始数据取对数后进一步处理。之所以这样做是基于对数函数在其定义域内是单调增函数,取对数后不会改变数据的相对关系,取对数作用主要有:1. 缩小数据的绝对数值,方便计算。例如,每个数据项的值都很大,许多这样的值进行计算可能对超过常用数据类型的取值范围,这时取对数,就把数值缩小了,例如TF-IDF计算时,由于在大规模语料库中,很多词的频率是非常大的数字。2. 取对数后,可以将乘法计算转换称加法计算。3. 某些情况下,在数据的整个值域中的在不同区间的差异带来的影响不同。例如,转载 2021-08-19 10:30:19 · 1905 阅读 · 0 评论 -
jupyter notebook安装Nbextensions
一、基本操作1、通过cmd打开jupyter notebook。jupyter notebook如果没出错,就会在浏览器中打开notebook文件。2、在file菜单栏下有本地文件夹的路径,可以点击相应的文件打开本地的notebook文件。3、可以在new菜单栏下新建一个python3文件。二、notebook快捷键的使用1、执行单元格:ctrl + enter2、执行当前单元格,并移动到下一个单元格:shift + enter3、执行当前单元格,并新建、移动到下一个单元格:转载 2021-08-16 10:23:54 · 1067 阅读 · 0 评论 -
准确率,精确率(AP)与召回率(AR)
准确率、精确率和召回率是在目标检测中非常重要的指标,那么它们能反映出模型的结果中的哪些问题呢?如下:准确率、精确率和召回率的解释:True Positive(真正,TP):将正类预测为正类数True Negative(真负,TN):将负类预测为负类数False Positive(假正,FP):将负类预测为正类数误报 (Type I error)False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)准确率、精确率和召回率的公式:准确率(原创 2021-07-19 13:29:20 · 9055 阅读 · 0 评论 -
空洞卷积计算感受野
空洞卷积感受野的计算:空洞卷积感受野的大小分两种情况:(1)不带padding的空洞卷积:若空洞卷积率为dilate rate则感受野尺寸=(dilate rate-1)×(k-1) + k #k为卷积核大小;不带padding的感受野其实就是添加空洞之后的卷积核大小;(2)带padding的空洞卷积:若空洞卷积率为dilate rate则感受野尺寸=2×(dilate rate-1)×(k-1) + k #k为卷积核大小;...原创 2021-02-22 14:55:06 · 2057 阅读 · 2 评论 -
交叉熵损失函数详解
交叉熵详解原创 2021-01-01 08:45:35 · 3429 阅读 · 0 评论 -
纳什均衡 (Nash Equilibrium)
概念“纳什均衡“是由美国数学家小约翰·福布斯·纳什(John Forbes Nash Jr),在1950年获得美国普林斯顿大学的博士学位的只有28页的博士论文中提出的一个“博弈论”的概念,根据纳什的说法,“一个纳什平衡点是当其余参与者的策略保持不变时,能够令参与者的混合策略最大化其收益的一个n元组”。[1]“纳什均衡“广泛运用在经济学、计算机科学、演化生物学、人工智能、会计学、政策和军事理论等方面。1994年,纳什和其他两位博弈论学家约翰·海萨尼和莱因哈德·泽尔腾共同获得了诺贝尔经济学奖。[2]转载 2020-12-14 17:10:34 · 17983 阅读 · 0 评论 -
非极大值抑制(non-maximum suppression)
非极大值抑制就是一个寻找局部最大值的过程。在进行目标检测时一般会采取窗口滑动的方式,在图像上生成很多的候选框,然后把这些候选框进行特征提取后送入分类器,一般会得出一个得分(score),比如人脸检测,会在很多框上都有得分,然后把这些得分全部排序。选取得分最高的那个框,接下来计算其他的框与当前框的重合程度(iou),如果重合程度大于一定阈值就删除,因为在同一个脸上可能会有好几个高得分的框,都是人脸但是不需要那么框我们只需要一个就够了。那么肯定有人会好奇,如果图片中有好几个人脸,你这选取一个最大的,那第转载 2020-12-01 15:11:21 · 352 阅读 · 0 评论