目录
引言
前段时间在网上看了一段代码,简直惊掉了下巴,代码贴在了下面,供大家欣赏
#include <stdio.h>
int test(int count)
{
int i =0;
int n=(count+7)/8; /*假设count>0*/
switch(count%8)
{
case 0: do{ i++;
case 7: i++;
case 6: i++;
case 5: i++;
case 4: i++;
case 3: i++;
case 2: i++;
case 1: i++;
}while(--n>0);
}
return i;
}
int main(int argc,char *argv[])
{
printf("%d\n",test(20));
return 0;
}
如果你也是第一次看到的话,不妨试一下,看你能得出正确答案吗?
其实,上述代码源自大师之手,我只是做了少许修改。先来聊一下这段历史渊源吧。
Duff's Device
1983年11月,一位叫Tom Duff的大牛在编写串口通信程序时,发现使用一般的写法时,性能总是不能让人满意。后来,这位老兄凭借深厚的编程功底和精湛的C语言技艺,利用C语言中switch语句的一个鲜为人知的特性,发明如了下图所示的经典代码:
void duffs_device_memcpy(char* dest, const char* src, size_t size) {
size_t n = (size + 7) / 8; // 计算需要多少次循环展开
switch (size % 8) { // 处理剩余字节
case 0: do { *dest++ = *src++;
case 7: *dest++ = *src++;
case 6: *dest++ = *src++;
case 5: *dest++ = *src++;
case 4: *dest++ = *src++;
case 3: *dest++ = *src++;
case 2: *dest++ = *src++;
case 1: *dest++ = *src++;
} while (--n > 0);
}
}
结果,引来无数吃瓜群众膜拜。在此之前,还没有人发现并利用过C语言的这个特性,于是他便以自己的名字命名这段代码,叫做Duff's Device,一般译为"达夫设备"。
一起看一下大牛的风采,1983年,在卢卡斯影业上班的程序员Tom Duff
代码解析
当时,Duff的需求,是把一段起始地址为from
,长度为count
的数据,写入到一个内存映射的I/O(Memory Mapped I/O)寄存器to
中。
我相信大家都能实现这个需求,直接用for
或者while
循环就可以解决了
void send(uint8_t *to, uint8_t *from, uint16_t count)
{
do { /* count > 0 assumed */
*to++ = *from++;
} while (--count > 0);
}
代码清晰简洁,很直观,简直完美,对吧?
Duff却对此很不满意,因为他觉得这种写法虽然简单,但太过低效,无法接受。
如此简单的代码,为何说它性能低下呢?主要有两个问题:
-
"无用"指令太多
-
无法充分发挥CPU的ILP(Instruction-Level Parallelism)技术
我们来分析一下。
所谓无用指令,是指不直接对所期望的结果产生影响的指令。
对于这段代码,我们期望的结果就是把数据都拷贝到I/O寄存器to中。那么,对于这个期望的结果来说,真正有用的代码,其实只有中间那一行赋值操作:
*to++ = *from++;
而每次迭代过程中的while (--count > 0)
产生的指令,以及每次迭代结束后的跳转指令,对结果来说都是无用指令。
上面最简单的实现中,每次循环迭代只拷贝一个字节数据。这就意味着,有多少个字节的数据,就需要执行多少次跳转和条件判断,以及--count
的操作。
何为CPU的ILP(Instruction-Level Parallelism)技术?
是指处理器在单个指令流中同时执行多条指令的能力。它是现代 CPU 提高性能的关键技术之一,通过并行执行指令来充分利用硬件资源。
- 流水线(Pipelining):将指令执行分为多个阶段,每个阶段由不同的硬件单元处理。
- 超标量(Superscalar):在一个时钟周期内发射多条指令到多个执行单元。
- 乱序执行(Out-of-Order Execution):根据指令的依赖关系动态调整执行顺序
一个设计合理的程序,往往能够充分利用CPU的这些ILP机制,以使性能达到最优
但是上述代码无用指令太多,且每个迭代只执行中间那一行赋值操作,无法充分发挥ILP的技术优势。
知道上面那个简单实现性能差的原因了,那么如何去优化它呢?
循环展开
所谓循环展开,是通过增加每次迭代内数据操作的次数,来减小迭代次数,甚至彻底消除循环迭代的一种优化手段。
循环展开,有以下优点:
-
有效减少循环控制指令。前面说过,这些指令,是对结果不产生影响的无用指令。减少这些指令,就可以减少这些指令本身执行所需的开销,从而提升整体性能。
-
通过合理的展开,可以更加有效地利用指令级并行ILP(Instruction-Level Parallelism 指令级并行)技术。
循环展开是一个很常用的性能优化手段,所有现代编译器,通过合适的选项,都支持循环展开优化。
知道循环展开的好处,可以对上面的代码实现进行第一次优化尝试了。
我们先尝试把每次循环内拷贝字节的个数,由1个提高到到8个,这样就可以把迭代次数降低8倍。
我们先假设,send()函数的参数count总是8的倍数,那么上面的代码就可以修改为:
void send(uint8_t *to, uint8_t *from, uint16_t count)
{
uint16_t n=count/8; /* 假设count > 0 且是8的倍数*/
do {
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
} while (--n > 0);
}
上面的代码很好理解,就是把原来迭代里的操作复制了8次,然后把迭代次数降低了8倍。
但是,我们前面做了一个假设,就是count是8的倍数。那如果不是8的整数倍呢,那我们如何优化呢?
void send(uint8_t *to, uint8_t *from, uint16_t count)
{
uint16_t n=count/8; /* 假设count > 0 */
do {
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
} while (--n > 0);
n=count%8;
while(n-->0)
{
*to++ = *from++;
}
}
优化到这里,相比原始的实现来说,性能已经大大得到了提升。但是,Duff仍然不满意,他看着第二个while循环非常不爽,尽管对整体性能已经没有太大影响了。
也许这就是大牛异于常人之处,大牛总是追求极致,总是可以在看似不可能的时候,再往前走一步。
switch-case特性
Duff注意到C语言中switch-case语句的一些特性:
-
case语句后面的break语句不是必须的。
-
在switch语句内,case标号可以出现在任意的子语句之前,甚至运行出现在if、for、while等语句内。
Duff便利用switch-case的特性,用来处理第一个while循环之后仍然剩余的count % 8
个字节的数据。于是便有了这样的代码:
void send(uint8_t *to, uint8_t *from,uint16_t count)
{
uint16_t n = (count+7)/8; /*假设count>0*/
switch(count%8)
{
case 0: do{ *to++=*from++;
case 7: *to++=*from++;
case 6: *to++=*from++;
case 5: *to++=*from++;
case 4: *to++=*from++;
case 3: *to++=*from++;
case 2: *to++=*from++;
case 1: *to++=*from++;
}while(--n>0);
}
}
我们假设count = 20
,那么:
n = (count + 7) / 8 = 27 / 8 = 3
count % 8 = 4
-
switch语句会落入
case 4
的标签内,然后依次执行了case 4、3、2、1
四条语句。自此之后,其实就跟switch-case语句再也没有关系了。 -
while语句判断
--n > 0
,条件成立,于是跳转到case 0
进入循环体执行,于是依次执行case 0、7、6、5、4、3、2、1
一共8条语句。此时n = 2
. -
再次进入while语句处判断
--n >0
,条件成立,再次跳转到case 0
处进入循环体执行。此时n = 1
。 -
此时,while语句处判断
--n >0
,条件失败,退出循环,函数结束。
好了,到这里,大家应该理解Duff's Device了吧。理解了Duff's Device之后,文章开头的那个题目就很好理解了。