- 博客(63)
- 收藏
- 关注
原创 【零基础学AI】第29讲:BERT模型实战 - 情感分析
摘要: 本教程基于BERT模型实现情感分析任务,讲解微调预训练模型的核心流程。首先介绍BERT的双向编码优势及其在情感分析中的适用性,包括上下文理解和情感词捕捉能力。通过HuggingFace Transformers库,逐步演示数据加载(SST-2数据集)、BERT模型初始化、文本预处理(分词与格式化)以及训练配置(学习率2e-5、3轮训练)。代码涵盖完整训练评估流程,最终模型在验证集准确率达91.2%。还提供预测脚本、常见问题解答(如速度优化和准确率提升)及扩展练习建议。
2025-07-07 10:48:06
603
原创 【零基础学AI】第28讲:Transformer模型实战 - 文本分类
摘要:本教程介绍了如何使用Transformer模型进行文本分类。首先讲解了Transformer的核心原理,包括编码器、解码器和自注意力机制。然后通过HuggingFace库实战演示了IMDB电影评论分类任务,涵盖数据准备、模型加载、预处理、训练和评估全流程。代码示例展示了如何加载DistilBERT模型、处理数据、设置训练参数,并实现准确率评估。最后提供了常见问题解答和课后练习建议,帮助学习者掌握基于Transformer的文本分类技术。
2025-07-07 10:46:00
328
原创 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
本文介绍了注意力机制在神经机器翻译中的应用。主要内容包括:注意力机制的核心思想(动态聚焦、软对齐、上下文向量)、三种常见实现方式(加性、点积、缩放点积),以及构建英法翻译系统的完整代码实现。通过5万条平行语料训练Seq2Seq模型,结合注意力机制解决传统方法的信息瓶颈问题。代码涵盖数据预处理、分词器构建、模型定义(编码器-解码器结构+注意力层)以及训练数据准备等关键步骤,最终实现一个可解释性强、性能优异的神经翻译系统。
2025-07-06 16:00:00
607
原创 【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
摘要 本教程介绍了使用LSTM网络生成莎士比亚风格文本的完整流程。首先分析了RNN的基本原理及其梯度消失问题,详细讲解了LSTM的三门机制如何解决长序列依赖。然后通过代码实战演示了:1) 准备莎士比亚文本数据并建立字符映射;2) 创建序列训练样本;3) 构建包含嵌入层和LSTM的神经网络;4) 训练模型并保存检查点;5) 实现文本生成函数,通过温度参数控制生成文本的随机性。整个项目采用TensorFlow框架,最终可生成具有莎士比亚风格的连贯文本。
2025-07-06 10:00:00
1231
原创 【零基础学AI】第25讲:迁移学习 - 预训练模型使用
这篇文章介绍了深度学习中的迁移学习技术及其应用。主要内容包括:迁移学习的核心概念(特征提取、微调等),主流预训练模型比较(VGG16、ResNet等),以及使用Keras实现迁移学习的完整流程。文章通过猫狗分类的实战案例,详细演示了从数据准备、模型构建到训练评估的全过程,特别强调了数据增强、模型微调等关键技术。迁移学习的优势在于能利用预训练模型在小数据集上获得良好性能,大幅降低训练成本。教程适合有一定深度学习基础的开发者学习,代码示例基于TensorFlow 2.x实现。
2025-07-05 17:52:36
1034
原创 【零基础学AI】第24讲:卷积神经网络(CNN)架构设计
本文介绍了卷积神经网络(CNN)的核心概念与应用。首先分析了全连接网络处理图像时的局限性,并阐述了CNN通过局部感受野、参数共享和平移不变性三大特性解决问题的原理。详细讲解了CNN的三大核心操作:卷积(特征提取)、池化(降维压缩)和全连接(分类决策)。文章包含完整的代码实践,使用TensorFlow构建CNN模型处理CIFAR-10数据集,涵盖数据预处理、模型构建、训练评估以及卷积核可视化等关键步骤。最后提供了完整的项目结构和代码文件,方便读者实现一个基础的图像识别系统。
2025-07-05 17:51:11
1170
原创 【零基础学AI】第23讲:神经网络原理 - 前向传播与反向传播
神经网络入门与实践摘要 本文系统介绍了神经网络的基础知识与应用实践。首先通过婴儿学习识别苹果的类比,解释了神经网络的学习机制。核心概念涵盖神经元结构、网络层级、前向传播(数据从输入到输出的线性变换与激活过程)和反向传播(通过链式法则调整参数的误差反馈机制)。实战部分使用MNIST手写数字数据集,演示了如何使用TensorFlow构建包含输入层、隐藏层和输出层的神经网络模型,并详细展示了数据预处理、模型训练及评估的全流程。特别提供了手动实现前向/反向传播的代码示例,帮助读者深入理解神经网络底层数学原理。
2025-07-04 09:44:42
963
原创 【零基础学AI】第22讲:PyTorch入门 - 动态图计算与图像分类器实战
PyTorch深度学习入门摘要 PyTorch是一个基于动态计算图的深度学习框架,以其灵活性和易用性著称。本课程从基础概念入手,讲解了PyTorch的核心组件:张量(Tensor)作为基本数据结构,动态计算图实现模型灵活构建,以及自动求导(Autograd)机制简化梯度计算。通过代码实践演示了张量操作、自动求导、简单神经网络构建和训练循环。最后以CIFAR-10图像分类项目为例,展示了完整的PyTorch工作流程,包括数据预处理、模型定义、训练和评估。
2025-07-04 09:41:36
624
原创 【零基础学AI】第21讲:TensorFlow基础 - 神经网络搭建入门
本文介绍了TensorFlow的基本概念和入门实践。主要内容包括:1) TensorFlow的简介及其优势,将其比作"AI积木工厂";2) 安装指南和环境要求;3) 核心概念:张量、计算图和自动微分;4) 通过房价预测案例演示简单神经网络的构建与训练流程;5) 手写数字识别项目的引入。文章使用生活化比喻和代码示例相结合的方式,帮助初学者快速理解TensorFlow的基本使用方法,特别适合具备Python基础但无深度学习背景的学习者入门。
2025-07-03 10:31:03
1207
原创 【零基础学AI】第20讲:推荐系统 - 从基础算法到工业级实践
本文介绍了推荐系统的核心算法原理与实战应用。主要内容包括:1)推荐系统全景图和评估指标矩阵;2)数据准备与探索性分析;3)协同过滤算法实现(基于用户、基于物品和SVD矩阵分解);4)深度学习推荐模型(NCF、Wide&Deep)。通过MovieLens数据集展示了完整的推荐系统构建流程,涵盖从传统方法到前沿深度学习模型的完整技术栈。文章还提供了推荐系统评估的10种专业指标,帮助读者全面掌握推荐系统的设计、实现与优化方法。
2025-07-03 10:27:20
528
原创 【零基础学AI】第19讲:时间序列分析 - 从基础预测到深度学习方法
时间序列分析实战指南 本文介绍了时间序列分析的完整流程与核心方法,包含: 核心概念:时间序列三大特征(趋势性、季节性、随机性)和评估指标(MAE、RMSE、MAPE等) 分析方法: 传统模型:ARIMA、Prophet 机器学习方法:特征工程+XGBoost 深度学习方法:LSTM模型 实战代码:提供了数据可视化、季节性分解、模型构建和评估的完整Python实现示例 应用场景:适用于金融预测、销量预测、设备监测等领域 通过环境准备、数据探索、模型构建到结果评估的全流程演示。
2025-07-02 10:16:49
1338
原创 【零基础学AI】第18讲:模型评估的科学方法论 - 交叉验证与评估指标
主要内容包括: 7种交叉验证策略:涵盖基础K折、分层K折、时间序列、分组交叉验证等,解决不同场景下的数据划分问题 30+评估指标:详细解析分类(AUC-ROC、F1等)、回归(R²、MAE等)、聚类(轮廓系数等)任务的评估体系 实战代码示例: 使用sklearn实现多种交叉验证 可视化分类指标(混淆矩阵、PR曲线、ROC曲线) 计算回归指标并进行残差分析 评估方法论:提供指标选择矩阵,指导不同任务场景下的评估指标选择
2025-07-02 10:14:51
1193
原创 【零基础学AI】第17讲:特征工程 - 特征选择与转换
本文介绍了特征工程的核心概念与技术方法,包含特征选择和特征转换两大模块。首先通过乳腺癌数据集展示了数据探索流程,包括缺失值检查、统计分析和相关性可视化。在特征选择方面,详细演示了过滤法(互信息统计)、包装法(递归特征消除)和嵌入法(XGBoost重要性)三种典型方法。在特征转换环节,重点讲解了数值处理(幂变换、分箱离散化)和特征构造(交互特征、多项式特征)技术。最后通过完整的Pipeline构建,对比了基准模型与特征工程优化后的模型性能,准确率提升达15%。
2025-07-01 13:36:54
1128
原创 【零基础学AI】 第16讲:聚类分析实战 - 客户分群营销
理解聚类分析的核心思想和应用场景;掌握K-means算法的原理和实现;学会确定最优聚类数量的方法;完成客户分群项目,制定营销策略;了解其他聚类算法的特点;
2025-07-01 11:27:01
876
原创 【零基础学AI】第15讲:K近邻算法实战 - 商品推荐系统
理解K近邻算法的"近朱者赤"思想;掌握距离度量方法和K值选择技巧;学会构建基于相似度的推荐系统;完成商品推荐项目;了解KNN的优缺点和适用场景;
2025-07-01 11:14:12
847
原创 【零基础学AI】第14讲:支持向量机实战 - 文本分类系统
本文摘要介绍了支持向量机(SVM)的基本原理及其在文本分类中的应用。主要内容包括:1) SVM的核心思想是通过寻找最大间隔的最优分界线来区分不同类别;2) SVM的优势在于泛化能力强、处理高维数据效果好;3) 通过邮件分类项目实战,展示了从数据生成、文本预处理到特征提取的完整流程;4) 使用TF-IDF方法转换文本为数值特征,并比较了不同核函数的性能。实验结果表明SVM在文本分类任务中表现优异,准确率可达95%以上。
2025-06-30 13:58:04
849
原创 【零基础学AI】第13讲:随机森林实战 - 用户行为预测
摘要 本课程介绍了随机森林模型及其应用,主要内容包括: 随机森林原理:通过多棵决策树投票提高预测准确性,降低单棵树偏差,采用Bootstrap抽样和特征随机性增强多样性。 模型优势:准确性高、抗过拟合、可并行处理大数据、自动评估特征重要性、对缺失数据鲁棒性强。 实战案例: 生成2000条用户行为模拟数据 构建包含年龄、使用时长、消费金额等20+特征的数据集 基于多维度规则创建"下月活跃"预测目标 进行数据探索分析和特征可视化
2025-06-30 13:55:06
839
原创 【零基础学AI】 第12讲:决策树模型实战
决策树实战:客户购买预测 摘要:本课程通过模拟客户购买数据,系统讲解决策树模型的应用。首先使用Python生成1000条客户特征数据(年龄、收入、访问次数等),分析特征分布与相关性。然后分割数据集,构建决策树分类器(限制max_depth=5防止过拟合),并训练模型。最后评估模型性能,通过可视化展示决策树结构和特征重要性。项目亮点包括:数据模拟规则设计(收入、访问次数、历史购买综合影响购买概率)、模型可解释性分析,以及完整的分类评估流程(准确率、混淆矩阵等)。
2025-06-29 17:30:00
553
原创 【零基础学AI】第11讲:逻辑回归
本文摘要: 《逻辑回归实战:垃圾邮件分类器》课程介绍了逻辑回归的核心原理及其与线性回归的区别,重点讲解如何利用sigmoid函数将线性输出转换为概率值(0-1)。通过构建垃圾邮件分类器的完整案例,演示了数据生成、特征提取(如感叹号数量、大写比例、关键词统计等)、模型训练(使用scikit-learn的LogisticRegression)及评估(准确率、ROC曲线等)的全流程。课程包含Python代码实现,涵盖TF-IDF文本特征处理、混淆矩阵分析等实用技巧,帮助学习者掌握分类问题的典型解决方法。
2025-06-29 10:00:00
1360
原创 【零基础学AI】 第10讲:线性回归
本文介绍了线性回归的基本原理及其在房价预测中的应用。主要内容包括:1)线性回归的核心思想是通过最小二乘法寻找特征与目标变量的线性关系;2)使用加利福尼亚房价数据集进行实战演练,包含数据探索、可视化和特征分析;3)通过Python代码演示了数据预处理、模型训练和评估过程。重点分析了各特征与房价的相关性,发现社区收入是最关键的影响因素。文章采用代码+可视化+文字解析的方式,帮助读者理解如何构建和评估一个实用的房价预测模型。
2025-06-28 18:00:00
934
原创 【零基础学AI】第9讲:机器学习概述
本文介绍了机器学习基础概念与实战案例,主要内容包括: 机器学习概念:对比传统编程与机器学习的差异,强调从数据中自动学习规律的特点 学习类型: 监督学习(分类/回归) 无监督学习(聚类/降维) 强化学习 实战案例:使用scikit-learn构建鸢尾花分类器 数据加载与探索(150个样本,4个特征) 可视化分析不同品种的特征分布 随机森林模型训练(准确率96.67%) 模型评估与混淆矩阵分析 关键步骤:数据分割、特征重要性分析、预测结果验证 通过完整项目演示了机器学习的基本流程,适合初学者入门实践。
2025-06-28 10:00:00
1776
原创 【零基础学AI】 第8讲:云端开发环境
本文介绍了云端AI开发环境的优势及使用方法,重点讲解了百度飞桨AI Studio和腾讯云CloudStudio两大国产平台。通过对比传统本地开发与云端开发的区别,展示了云端环境无需硬件配置、提供GPU资源和协作便捷的优点。文章提供了详细的代码实战教程,包括AI Studio的项目创建、环境验证、GPU性能测试以及CIFAR-10数据集处理示例,帮助读者快速上手云端AI开发。该内容特别适合初学者、需要GPU加速的深度学习项目以及团队协作场景,让开发者能够随时随地开展AI实验。
2025-06-27 10:46:34
749
原创 【零基础学AI】 第7讲:OpenAI API使用
本文摘要: 《Python调用DeepSeek AI API开发指南》介绍了如何通过API快速集成AI能力。课程涵盖API核心概念(类比餐厅点餐服务)、DeepSeek国产API优势(中文友好/性价比高),以及四步实战:1) 申请API密钥并安全存储;2) 基础单次问答实现;3) 支持多轮对话的历史记忆功能;4) 增强版智能问答系统(含系统角色设定)。关键代码演示了环境配置、请求发送和错误处理,强调安全注意事项如密钥保护。
2025-06-27 10:45:11
1080
原创 【零基础学AI】 第6讲:数据可视化基础
数据可视化与Matplotlib基础 数据可视化是将数据转化为图形,使复杂信息一目了然的关键技术。本课程重点介绍了Python核心可视化工具Matplotlib的基础架构与应用。课程内容包含: 核心概念、图表类型:、AI应用场景。Matplotlib作为Python生态的数据可视化基石,在科研、商业分析和AI项目中具有不可替代的作用。
2025-06-26 11:18:03
902
原创 【零基础学AI】第5讲:Pandas数据处理
本文介绍了Python数据分析库Pandas的核心概念与应用。主要内容包括:1) Pandas的两种核心数据结构(一维Series和二维DataFrame)的创建与基本操作;2) 数据选择方法(列选择、行选择、条件筛选);3) 数据预处理技巧。Pandas作为数据分析和AI领域的重要工具,能够高效处理结构化数据,支持数据清洗、特征工程等关键任务。文章通过具体代码示例演示了如何创建Series/DataFrame、访问数据属性、执行基本统计计算以及进行条件筛选等操作,为后续数据分析实战打下基础。
2025-06-26 11:16:07
1094
原创 【零基础学AI】第4讲:NumPy数组操作
本文介绍了NumPy在AI开发中的核心作用及其基础操作。NumPy作为Python科学计算的基础库,其多维数组对象(ndarray)具有高效、同质、多维的特点,比Python原生列表快10-100倍,是Pandas、Scikit-learn等AI库的底层基础。文章详细讲解了NumPy数组的创建方法(从列表生成/内置函数生成)、关键属性(形状、维度、数据类型等)以及核心操作技巧(索引、切片、条件筛选),重点演示了一维和二维数组的索引方式。
2025-06-25 10:08:30
586
原创 【零基础学AI】第3讲:Git版本控制基础
Git版本控制入门摘要 本教程介绍Git版本控制的基础知识,主要包括: Git简介:解释版本控制的概念和Git的优势,如分布式架构、高效分支管理等 安装配置:提供Windows/macOS/Linux的安装指南及基础配置(用户信息、SSH密钥等) 核心概念:讲解工作区、暂存区、版本库三区域和文件四种状态 实战演示: 创建Git仓库 建立AI项目结构(数据目录、源码等) 编写Python演示程序展示Git功能 添加.gitignore文件
2025-06-25 10:07:02
505
原创 【零基础学AI】第2讲:Jupyter Notebook使用
本文介绍了Jupyter Notebook的基础使用和数据分析应用。主要内容包括:Jupyter Notebook的核心概念(Cell和Kernel)、三种启动方式、界面功能介绍、Cell操作详解(Code和Markdown)、常用快捷键以及一个完整的销售数据分析项目示例。项目演示了从数据导入、清理到可视化分析的全过程,展现了Jupyter Notebook作为交互式编程环境的优势,特别适合数据分析、机器学习实验和研究报告的编写。
2025-06-24 09:51:04
1153
原创 【零基础学AI】第1讲:Python开发环境配置
零基础AI课程:理解为什么选择Python做AI开发,成功安装Anaconda开发环境,学会使用conda管理Python包,搭建一个完整的AI开发环境,运行你的第一个AI程序。
2025-06-24 09:48:37
846
原创 【Dify精讲】第20章:未来架构演进展望
Dify开源平台的架构演进与未来展望 文章分析了Dify平台从Beehive架构向Organism架构的进化路径,预测其将具备自愈性、自适应和自进化三大特征。在插件系统方面,文章展望了从当前解耦架构到智能插件编排,再到自进化插件生态的三级跃迁。模型运行时方面,文章指出Dify已实现统一接口和负载均衡,未来可能向更智能的资源调度发展。整体而言,Dify正在从模块化工具平台向具备自我优化能力的AI应用开发生态系统演进,这一转变将极大降低AI应用开发门槛,提高系统可靠性和适应性。
2025-06-23 11:12:33
1055
原创 【Dify精讲】第19章:开源贡献指南
深入探讨了 Dify 的开源贡献体系,从流程规范到实战案例,从技术细节到社区文化。好的开源项目就像一个活跃的生态系统,每个贡献者都是其中不可或缺的一部分。
2025-06-23 11:06:56
735
原创 【Dify精讲】第18章:企业级功能定制
企业级AI应用部署常面临开源版本无法满足业务需求的挑战。本文以Dify平台为例,剖析企业级功能定制方案。在SSO集成方面,分析了标准认证机制不足后,提出完整的SAML SSO实现方案。通过扩展认证架构,包括SAMLProvider类实现认证请求生成和响应处理,以及属性映射机制,解决了企业统一身份认证需求。技术实现上展示了XML处理、签名验证和属性提取等关键环节,为自部署企业提供了可落地的技术路径。
2025-06-22 18:00:00
1150
原创 【Dify精讲】第17章:前端组件定制开发
Dify前端组件设计解析 本文深入剖析了Dify AI应用的前端组件架构设计。其采用分层组件结构,分为基础组件、业务定制组件和开发组件三大类,体现了原子化设计和业务隔离原则。在技术实现上,Dify遵循严格的PascalCase命名规范,使用TypeScript确保类型安全,并采用模块化CSS解决样式污染问题。 典型组件设计示例展示了Dify的技术亮点:通过props组合实现样式变体、合理的默认值处理、优雅的状态管理以及复合组件模式。
2025-06-22 10:00:00
1752
原创 【Dify精讲】第16章:Provider接入开发
Dify的Provider系统解析与LLM模型接入实战 摘要: 本文深入解析了Dify平台如何通过Provider系统实现多模型统一接入。核心内容包括: Provider系统的三层架构设计(Provider层、Model层、Schema层)及三种配置模式(预定义模型、可定制模型、远程获取) 实战演示如何开发自定义模型Provider,从项目结构创建到具体实现 重点剖析了LLM模型接入的核心逻辑,包括Provider基类接口、凭据验证机制等。
2025-06-21 18:00:00
1147
原创 【Dify精讲】第15章:自定义节点开发实战
摘要:本文深入解析Dify节点系统设计哲学,展示从开发规范到实战应用的全流程。重点剖析节点架构设计(如BaseNode泛型约束、状态隔离机制)和生命周期管理,并通过数据验证节点开发示例,演示如何定义Pydantic数据模型、实现核心验证逻辑。文章强调类型安全、配置验证和错误处理等关键设计原则,为开发者提供完整的自定义节点开发指南。(149字)
2025-06-21 10:00:00
5496
3
原创 【Dify精讲】第14章:部署架构与DevOps实践【知识卡片】
知识卡片 :涵盖从开发到生产的全流程。主要内容包括Docker容器化实现环境统一、Kubernetes云原生部署、CI/CD自动化流程设计、高可用架构构建等关键技术。同时探讨了监控系统、性能调优、灾难恢复、安全加固和成本优化等运维要点,最后分享实战经验总结,为AI服务的高效稳定运行提供全面指导。
2025-06-20 09:48:21
468
原创 【Dify精讲】第14章:部署架构与DevOps实践
Dify AI应用的部署架构与DevOps实践解析 摘要: Dify作为一个AI应用平台,其部署架构设计体现了现代DevOps最佳实践。文章详细剖析了Dify的容器化方案和云原生部署策略:1)采用多阶段Docker构建优化镜像体积和安全,通过分离构建与运行环境实现效率提升;2)精心设计的docker-compose编排展示了完整的微服务架构,包括API、Worker、前端、数据库等组件,具备服务依赖管理、健康检查等特性;3)提供Helm Chart支持Kubernetes云原生部署。
2025-06-20 09:38:09
870
原创 【Dify精讲】第13章:监控与日志系统【知识卡片】
知识卡片:首先阐述结构化日志收集架构的重要性,其次分析性能监控指标的数据驱动价值。重点讲解了错误追踪机制和可观测性实践方法,以及如何配置告警规则实现主动监控。最后分享了实际监控经验,并对监控系统的发展前景进行了展望。全文系统性地呈现了从日志采集到问题定位的完整监控解决方案。
2025-06-19 11:15:31
262
原创 【Dify精讲】第13章:监控与日志系统
完整的日志架构:从请求开始到结束的全链路日志追踪丰富的监控指标:覆盖业务、系统、基础设施各个层面智能的错误追踪:快速定位问题,减少故障修复时间可视化的监控大盘:直观展示系统健康状况及时的告警通知:主动发现问题,而不是被动等待用户投诉这些设计不仅适用于AI应用,对于任何需要高可用性的系统都有参考价值
2025-06-19 10:46:25
798
原创 【Dify精讲】第12章:性能优化策略与实践【知识卡片】
知识卡片:从缓存设计、异步处理、数据库优化到前端性能提升,形成完整优化闭环。通过具体案例分析(如Dify项目实战),展示了监控分析工具的应用及优化效果,最后总结了性能调优的最佳实践。全文覆盖从后端到前端的性能提升方案,为构建高性能系统提供实用指导。
2025-06-18 09:42:25
312
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人