freeswitch 与TTS asr对接

本文详细解析了TTS(文本转语音)与ASR(语音识别)服务的云端对接方案,包括阿里云TTS的SDK代理与MRCP方式,以及ASR的实时语音流识别对接流程。探讨了不同对接方式的技术细节与成本考量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TTS对接

    TTS的对接分为两种方式,因为阿里的TTS只能通过sdk的方式来调用,没有公网URL的方式调用。如果有URL的方式交换机是可以直接调用的。

   1、URL调用方式,这种方式不需要通过MRCP中间件中转,直接交换机调用URL的方式,这种实现方式需要调用阿里的TTS SDK 做一个HTTP 代理,由于阿里提供的SDK 是生成语音文件的方式,在文件写入的时候直接写到HTTP流中即可;这样通过HTTP传文本就能够获取合成的TTS语音流,在交换机中做一定的缓存,就能减少调用;

  2、通过mrcp的方式,这种方式还是先生成语音文件,然后将语音文件转化为RTP流,然后通过MRCP消息控制,实现TTS的播放,为什么要先生成语音文件,主要还是因为JMF的文件获取方式还是文件流,实时流无法实现;

 

ASR对接

       阿里提供的ASR接口主要有两种方式,一种是一句话识别,一种是实时语音流识别,

第一种方式需要根据语音文件来识别,这种需要把每次MRCP交互的语音流保存成文件,然后调用识别接口,这个在MRCP中间件中有一个问题,就是一次交互你可能无法判断是不是语音流结束,所以这种方式不适合MRCP对接;

第二种实时语音流识别,是根据发送的实时流,不停的返回结果,比较符合MRCP的交互模式,所以采用了第二种,两种方式的云端计费方式也不一样,第一种是按次计费,第二种是按时间计费,总体感觉两种成本是差不多的。

     通过实时流对接我们需要将接收到RTP流转化车PCM流发送给阿里ASR服务端,然后将收到的结果转化为MRCP消息返回给交换机,目前做到的就是直文翻译,对于IVR应用,有时候还需要支持语音识别语法,如SRGS,这个目前还是没有实现的。
 

<think>好的,我需要帮助用户了解如何在FreeSWITCH中集成PaddleSpeech实现语音识别或合成。用户之前的问题是关于IVR播放语音后转接,现在转向了TTS/ASR集成,尤其是PaddleSpeech。根据用户提供的引用[1],用户可能在Windows环境下尝试过使用tts_commandline模块但遇到了问题,因为缺少该模块,所以需要替代方案。 首先,我需要回顾用户之前的配置,他们可能已经熟悉IVR的基本配置,现在想扩展功能到语音处理。用户提到FreeSWITCH的默认TTS效果不好,不支持中文,所以需要整合PaddleSpeech。 接下来,我需要确定集成PaddleSpeech的几种可能方法。常见的方法包括通过mod_tts_commandline调用外部脚本,或者使用Event Socket(ESL)进行更灵活的交互。用户之前在Windows上可能尝试过mod_tts_commandline但失败了,所以可能需要其他方法,比如通过ESL或HTTP APIPaddleSpeech服务通信。 另外,PaddleSpeech支持RESTful API,这可能是一个方便的集成点。用户可以在FreeSWITCH中通过lua脚本或curl命令发送请求到PaddleSpeech的API,获取生成的语音文件,然后播放。 对于ASR部分,用户可能需要配置mod_unimrcp或类似的模块,但如果在Windows上受限,可能需要替代方案,比如通过ESL捕获音频流并发送到PaddleSpeech的ASR服务。 需要考虑到用户的环境是Windows,所以某些模块可能不可用,比如mod_tts_commandline。因此,可能需要依赖外部脚本或HTTP接口来实现集成。 还需要验证PaddleSpeech的安装和运行是否正常,确保其API可以被FreeSWITCH访问。同时,处理生成的语音文件的存储和播放,可能需要临时目录来保存TTS生成的音频文件。 最后,总结几种可行的方案,并给出步骤说明,包括配置示例和注意事项,帮助用户选择适合他们环境的方法。同时,提醒用户可能需要的依赖和调试步骤,比如检查端口、权限,以及日志查看。</think>在FreeSWITCH中集成PaddleSpeech实现TTS/ASR功能,可通过以下方案实现: ### 一、TTS集成方案(文本转语音) #### 方案1:通过mod_tts_commandline调用 1. 安装PaddleSpeech服务 ```bash pip install paddlepaddle paddlespeech paddlespeech tts --server --port 8090 # 启动TTS服务 ``` 2. 配置FreeSWITCH调用脚本(Windows需安装Python) ```xml <!-- ivr_menus/tts_ivr.xml --> <menu name="paddle_tts" greet-long="say:欢迎使用智能语音服务,正在为您转接" tts-engine="commandline" tts-command="C:\Python\python.exe tts_paddle.py ${text} ${file}"> <entry action="menu-exec-app" param="transfer 1000 XML default"/> </menu> <!-- 在拨号计划中调用 --> <extension name="tts_demo"> <condition field="destination_number" expression="^5002$"> <action application="answer"/> <action application="tts" data="你好,这是PaddleSpeech生成的语音"/> <action application="ivr" data="paddle_tts"/> </condition> </extension> ``` 3. 创建`tts_paddle.py`脚本: ```python import sys, requests text = sys.argv[1] outfile = sys.argv[2] response = requests.post("http://localhost:8090/tts", json={"text":text}) with open(outfile, "wb") as f: f.write(response.content) ``` #### 方案2:通过Event Socket动态交互 ```lua -- tts_esl.lua freeswitch.consoleLog("INFO", "调用PaddleSpeech TTS\n") text = argv[1] file_path = "/tmp/tts_"..os.time()..".wav" os.execute("paddlespeech tts --input "..text.." --output "..file_path) session:streamFile(file_path) os.remove(file_path) ``` ### 二、ASR集成方案(语音识别) #### 通过MRCP协议对接 1. 配置mod_unimrcpPaddleSpeech服务交互 ```xml <!-- unimrcp.conf.xml --> <param name="ASR-Server" value="paddle-asr://localhost:8050"/> ``` 2. 拨号计划应用示例: ```xml <extension name="asr_demo"> <condition field="destination_number" expression="^5003$"> <action application="answer"/> <action application="speak"/> <action application="detect_speech" data="paddle_asr default grammar"/> <action application="log" data="识别结果:${utterance}"/> </condition> </extension> ``` ### 三、混合应用场景(TTS+ASR) ```python # asr_tts_hybrid.py session.answer() file = session.recordFile("/tmp/recording.wav", 10, 300) text = requests.post("http://localhost:8050/asr", files={"audio":open(file,"rb")}).text tts_file = f"/tmp/response_{time.time()}.wav" os.system(f"paddlespeech tts --input {text} --output {tts_file}") session.streamFile(tts_file) ``` ### 四、关键注意事项 1. 跨平台适配: - Windows需配置Python环境变量 - 路径使用双反斜杠(如`C:\\path\\to\\file`) - 设置临时文件目录可写权限[^1] 2. 性能优化: ```bash # 启用PaddleSpeech GPU加速 paddlespeech tts --use_gpu 1 --port 8090 ``` 3. 中文支持验证: ```xml <!-- 强制指定中文编码 --> <param name="tts-voice" value="zh-CN"/> ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值