- 🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客
- 🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)
理论知识
CycleGAN能做什么
CycleGAN的一个重要的应用领域就是Domain Adapation(域迁移:可以通俗的理解 为画风迁移)。
比如可以把一张普通的风景照变化成梵高的画作,或者将游戏画面变化成真实世界的画面,将一匹正常肤色的马转换为斑马等。
模型结构
CycleGAN由左右两个GAN网络组成。
G(AB)负责把A类物体(斑马)转换成B类物体(正常的马)
G(BA)负责把B类物体(正常的马)还原成A类物体(斑马)
然后由一个判别器网络D来判别B类物体的真实性
损失函数
CycleGAN的Loss由三部分组成,即:
L o s s = L o s s G A N + L o s s c y c l e + L o s s i d e n t i t y Loss=Loss_{GAN}+Loss_{cycle}+Loss_{identity} Loss=Loss