k8s之Kueue 核心概念解析

Kueue 核心概念解析:ResourceFlavor、ClusterQueue 与 LocalQueue 的协同设计

Kueue 是 Kubernetes 原生的批调度队列系统,专为管理批量工作负载的资源分配而设计。它通过三个核心概念——ResourceFlavor、ClusterQueue 和 LocalQueue——构建了一个多层次、灵活的资源管理体系。本文将深入解析这三个组件的功能、关联关系以及它们如何协同工作。

一、ResourceFlavor:资源类型的抽象定义

1.1 基本概念

ResourceFlavor 是 Kueue 中资源类型的抽象描述,它定义了计算节点的特性和约束条件,相当于为集群中的资源打上分类标签。

apiVersion: kueue.x-k8s.io/v1beta1
kind: ResourceFlavor
metadata:
  name: gpu-a100
spec:
  nodeLabels:
    gpu-type: a100       # 匹配节点标签
  nodeTaints:
  - key: gpu             # 定义节点污点
    value: "true"
    effect: NoSchedule
  tolerations:           # 自动添加的容忍度
  - key: gpu
    operator: Equal
    value: "true"
    effect: NoSchedule

1.2 关键功能

  • 节点选择:通过 nodeLabels 关联特定节点
  • 访问控制:通过 nodeTaints 限制资源使用
  • 自动注入:将定义的容忍度注入到匹配的工作负载

1.3 工作原理

  1. 当工作负载使用带有 ResourceFlavor 的 ClusterQueue 时
  2. Kueue 会比较工作负载的节点亲和性和 ResourceFlavor 的约束
  3. 不匹配的工作负载会被拒绝调度
  4. 匹配的工作负载会自动获得 ResourceFlavor 中定义的容忍度

版本注意:使用节点标签匹配需要 Kubernetes 1.23+

二、ClusterQueue:资源池的核心逻辑

2.1 基本架构

ClusterQueue 是 Kueue 的核心资源池概念,它定义了:

  • 可用的资源类型(通过 ResourceFlavor)
  • 资源配额分配规则
  • 资源竞争和调度策略
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: ai-training
spec:
  namespaceSelector:     # 命名空间选择器
    matchLabels:
      team: ai
  resourceGroups:
  - coveredResources: ["cpu", "memory", "nvidia.com/gpu"]
    flavors:
    - name: "gpu-a100"   # 引用 ResourceFlavor
      resources:
      - name: "nvidia.com/gpu"
        nominalQuota: 8   # 基准配额
        borrowingLimit: 4 # 最大可借用量
  queueingStrategy: BestEffortFIFO
  cohort: ai-cluster     # 队列集团

2.2 关键配置解析

资源配额管理
字段说明
nominalQuota基准配额,保障性资源量
borrowingLimit可借用其他队列的资源上限
lendingLimit可借出给其他队列的资源量
队列策略
  • queueingStrategy

    • StrictFIFO:严格先进先出,可能阻塞
    • BestEffortFIFO:尽力而为,提高利用率
  • cohort

    • 资源借用的逻辑分组
    • 同一 cohort 内的队列可相互借用资源
抢占机制
spec:
  preemption:
    reclaimWithinCohort: LowerPriority
    borrowWithinCohort:
      policy: LowerPriority
      maxPriorityThreshold: 100
    withinClusterQueue: LowerOrNewerEqualPriority
ClusterQueue 必须绑定 ResourceFlavor 才能正常工作
  • 在 Kueue 中,ClusterQueue 必须绑定 ResourceFlavor 才能正常工作,不能完全独立使用。这是由 Kueue 的资源管理模型决定的,但具体约束的严格程度取决于配置方式。以下是详细说明:

1. 为什么必须绑定 ResourceFlavor?

ClusterQueue 的核心功能是 管理资源配额,而配额必须关联到具体的资源类型(即 ResourceFlavor)。这是因为:

  • 资源异构性:集群中可能存在多种资源类型(如 CPU、GPU、高内存节点等),需要明确分配哪种资源。
  • 配额细分:不同 ResourceFlavor 的配额是分开管理的(例如:队列可以同时有 cpu-flavorgpu-flavor 的独立配额)。

2. 绑定方式与灵活性

虽然必须绑定 ResourceFlavor,但可以通过以下方式灵活配置:

(1) 默认 ResourceFlavor

如果集群只有一种通用资源类型,可以创建一个空的 ResourceFlavor(如你提供的示例),作为默认资源池:

# 空 ResourceFlavor(逻辑分组)
apiVersion: kueue.x-k8s.io/v1beta1
kind: ResourceFlavor
metadata:
  name: default-flavor
spec: {}  # 无特殊属性

然后在 ClusterQueue 中引用它:

apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: default-queue
spec:
  resourceGroups:
  - coveredResources: ["cpu", "memory"]  # 管理的资源类型
    flavors:
    - name: "default-flavor"  # 绑定空 ResourceFlavor
      resources:
      - name: "cpu"
        nominalQuota: 100
      - name: "memory"
        nominalQuota: 100Gi
(2) 多 ResourceFlavor 绑定

对于复杂场景,可以绑定多个 ResourceFlavor

spec:
  resourceGroups:
  - coveredResources: ["cpu", "nvidia.com/gpu"]
    flavors:
    - name: "gpu-flavor"  # 高优先级 GPU 资源
      resources:
      - name: "nvidia.com/gpu"
        nominalQuota: 8
    - name: "default-flavor"  # 普通 CPU
      resources:
      - name: "cpu"
        nominalQuota: 50

3. 如果不绑定 ResourceFlavor 会怎样?

  • 创建 ClusterQueue 时会报错:Kueue 的校验逻辑会要求 spec.resourceGroups.flavors 至少包含一个有效的 ResourceFlavor
  • 工作负载无法被调度:即使 ClusterQueue 创建成功,没有关联的 ResourceFlavor 会导致工作负载找不到可用资源。

4. 特殊情况:隐式默认 ResourceFlavor

某些 Kueue 实现可能允许:

  • 自动绑定集群全局默认 ResourceFlavor(如果未显式指定)。
  • 动态生成 ResourceFlavor(例如通过控制器自动发现节点标签)。

但这类行为依赖具体实现,并非标准特性。


5. 最佳实践建议

  1. 始终显式绑定 ResourceFlavor:即使只有一种资源类型,也明确声明。
  2. ResourceFlavor 作为兜底:如你的示例所示,可用于简单场景。
  3. 利用标签选择器:通过 ResourceFlavorspec.nodeSelector 精确控制资源匹配。

总结

问题答案
ClusterQueue 能否单独使用?不能,必须至少绑定一个 ResourceFlavor(即使是空的逻辑分组)。
为什么需要绑定?资源配额必须关联到具体的资源类型(ResourceFlavor)。
如何简化配置?使用空的 ResourceFlavor 作为默认资源池。

这种设计确保了资源分配的明确性和可审计性,避免了模糊的全局默认值导致的调度冲突。

三、LocalQueue:命名空间级接入点

3.1 定位与作用

LocalQueue 是 ClusterQueue 在命名空间维度的映射,它:

  • 将 ClusterQueue 的能力暴露给特定命名空间
  • 实现多租户隔离
  • 简化用户操作
apiVersion: kueue.x-k8s.io/v1beta1
kind: LocalQueue
metadata:
  namespace: ai-team-a
  name: training-queue
spec:
  clusterQueue: ai-training  # 关联的 ClusterQueue

3.2 工作流程

  1. 用户在工作负载中指定 LocalQueue
  2. Kueue 通过 LocalQueue 找到对应的 ClusterQueue
  3. 根据 ClusterQueue 的规则进行资源分配

四、三者的协同关系

4.1 层级架构

ResourceFlavor (资源类型定义)
       ↑
ClusterQueue (核心资源池)
       ↑
LocalQueue (命名空间接入点)
       ↑
Workload (用户任务)

4.2 交互流程

  1. 资源定义阶段

    • 管理员创建 ResourceFlavor 描述资源特性
    • 创建 ClusterQueue 并绑定 ResourceFlavor
    • 在各命名空间创建 LocalQueue 关联 ClusterQueue
  2. 工作负载提交阶段

    apiVersion: kueue.x-k8s.io/v1beta1
    kind: Workload
    metadata:
      namespace: ai-team-a
    spec:
      queueName: training-queue  # 指定 LocalQueue
      podSets:
      - name: "trainer"
        template:
          spec:
            containers:
            - name: cuda
              resources:
                requests:
                  nvidia.com/gpu: 2
    
  3. 调度决策阶段

    • Kueue 检查 LocalQueue → ClusterQueue → ResourceFlavor 的完整链路
    • 根据配额、优先级和调度策略决定是否接纳工作负载

4.3 关键约束关系

  1. ResourceFlavor 必须性

    • 每个 ClusterQueue 必须至少绑定一个 ResourceFlavor
    • 工作负载最终调度到的节点必须满足 ResourceFlavor 的约束
  2. 命名空间隔离

    • LocalQueue 确保只有特定命名空间的工作负载能使用关联的 ClusterQueue
    • 通过 ClusterQueue 的 namespaceSelector 二次验证
  3. 资源借用规则

    • 只能在相同 cohort 的 ClusterQueue 之间发生
    • 借用受 borrowingLimit/lendingLimit 限制

五、典型应用场景

5.1 异构 GPU 集群管理

ResourceFlavor: a100
ClusterQueue: a100-queue
ResourceFlavor: h100
ClusterQueue: h100-queue
LocalQueue: team-a
LocalQueue: team-b
LocalQueue: research

5.2 多租户资源共享

# 共享集群核心配置
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: shared-core
spec:
  cohort: shared-pool
  resourceGroups:
  - coveredResources: ["cpu"]
    flavors:
    - name: "default"
      resources:
      - name: "cpu"
        nominalQuota: 1000
        lendingLimit: 500  # 允许借出50%资源

六、最佳实践建议

  1. ResourceFlavor 设计

    • 按实际硬件差异定义(如 GPU 型号、CPU 架构)
    • 通过 taints/tolerations 实现硬隔离
  2. ClusterQueue 规划

    • 生产环境使用 StrictFIFO 保证公平性
    • 开发环境使用 BestEffortFIFO 提高利用率
    • 合理设置 borrowingLimit 防止资源饿死
  3. LocalQueue 管理

    • 按团队/项目划分 LocalQueue
    • 结合 RBAC 控制访问权限

七、常见问题解答

Q:能否绕过 LocalQueue 直接使用 ClusterQueue?
A:技术上可以,但会破坏多租户隔离,不建议在生产环境这样做。

Q:ResourceFlavor 必须对应实际的节点标签吗?
A:是的,nodeLabels 必须与节点上存在的标签匹配,否则无法调度。

Q:如何监控资源借用情况?
A:通过 Kueue 的 Metrics 或检查 ClusterQueue 状态中的 flavorUsage 字段。

通过这种三层架构,Kueue 实现了灵活而强大的资源管理能力,既能满足复杂的异构环境需求,又能保持清晰的权限和配额隔离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值