Tarjan强连通(自学版)

百度百科:http://baike.baidu.com/view/4064042.htm(我自己编的)

http://baike.baidu.com/view/1976645.htm(别人的)

强连通分量

  首先我们把强连通分量看做一个齿轮或环(他会转啊),不考虑其他的限制则可认为分量结点可以互换(就是转一下)不会影响分量中包含的结点(为什么这么想呢?你理解tarjan时中的low值有帮助)
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,
Low(u)=Min
{    DFN(u),    Low(v),(u,v)为树枝边,u为v的父节点    DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)}当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。
伪代码:tarjan(u){        
DFN[u]=Low[u]=++Index                      // 为节点u设定次序编号和Low初值             
Stack.push(u)                              // 将节点u压入栈中      
for each (u, v) in E                       // 枚举每一条边                
if (v is not visted)               // 如果节点v未被访问过                        
tarjan(v)                  // 继续向下找                        
Low[u] = min(Low[u], Low[v])                
else if (v in S)                   // 如果节点v还在栈内                        
Low[u] = min(Low[u], DFN[v])        
if (DFN[u] == Low[u])                      // 如果节点u是强连通分量的根               
repeat                        
v = S.pop                  // 将v退栈,为该强连通分量中一个顶点                       
print v                
until (u== v)}
cpp:
pascal: 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值